Publications by authors named "Carolyn A Weinbaum"

We developed the Alcohol Pharmacology Education Partnership (APEP), a set of modules designed to integrate a topic of interest (alcohol) with concepts in chemistry and biology for high school students. Chemistry and biology teachers ( = 156) were recruited nationally to field-test APEP in a controlled study. Teachers obtained professional development either at a conference-based workshop (NSTA or NCSTA) or via distance learning to learn how to incorporate the APEP modules into their teaching.

View Article and Find Full Text PDF

Inhibiting protein prenylation is an attractive means to modulate cellular processes controlled by a variety of signaling proteins, including oncogenic proteins such as Ras and Rho GTPases. The largest class of prenylated proteins contain a so-called CaaX motif at their carboxyl termini and are subject to a maturation process initiated by the attachment of an isoprenoid lipid by either protein farnesyltransferase (FTase) or protein geranylgeranyltransferase type I (GGTase-I). Inhibitors of FTase, termed FTIs, have been the subject of intensive development in the past decade and have shown efficacy in clinical trials.

View Article and Find Full Text PDF

Wrch-1 is a Rho family GTPase that shares strong sequence and functional similarity with Cdc42. Like Cdc42, Wrch-1 can promote anchorage-independent growth transformation. We determined that activated Wrch-1 also promoted anchorage-dependent growth transformation of NIH 3T3 fibroblasts.

View Article and Find Full Text PDF

Protein farnesyltransferase (FTase) is an enzyme responsible for posttranslational modification of proteins carrying a carboxy-terminal CaaX motif. Farnesylation allows substrates to interact with membranes and protein targets. Using gene-targeted mice, we report that FTase is essential for embryonic development, but dispensable for adult homeostasis.

View Article and Find Full Text PDF

The use of chlorotrityl resins for the immobilization of amines is sometimes deterred by the lengthy process of loading the reactants on the resins and product decomposition caused by the reactive chlorotrityl group in the presence of 1% TFA as a cleavage agent. Here, we report improved methods developed for selective and efficient loading of aminobenzoic acid derivatives on chlorotrityl resins and for cleavage of aniline-containing products from the resins without decomposition. These methods led to the synthesis of a library of 144 discrete chemicals as potential farnesyltransferase inhibitors (FTIs) using IRORI's radio-frequency-encoded sorting technique and to the study of the applicability of the bivalence approach to the development of FTIs.

View Article and Find Full Text PDF

Farnesyltransferase inhibitors (FTIs) block Ras farnesylation, subcellular localization and activity, and inhibit the growth of Ras-transformed cells. Although FTIs are ineffective against K-Ras4B, the Ras isoform most commonly mutated in human cancers, they can inhibit the growth of tumors containing oncogenic K-Ras4B, implicating other farnesylated proteins or suggesting distinct functions for farnesylated and for geranylgeranylated K-Ras, which is generated when farnesyltransferase is inhibited. In addition to bypassing FTI blockade through geranylgeranylation, K-Ras4B resistance to FTIs may also result from its higher affinity for farnesyltransferase.

View Article and Find Full Text PDF

In in vitro experiments, prenylcysteine lyase (Pcly) cleaves the thioether bond of prenylcysteines to yield free cysteine and the aldehyde of the isoprenoid lipid. However, the importance of this enzyme has not yet been fully defined at the biochemical or physiologic level. In this study, we show that Pcly is expressed at high levels in mouse liver, kidney, heart, and brain.

View Article and Find Full Text PDF