Knowledge of the mitochondrial DNA (mtDNA) sequence of divergent murine species is critical from both a phylogenetic perspective and in understanding nuclear-mitochondrial interactions, particularly as the latter influences our xenocybrid models of mitochondrial disease. To this end, the sequence of the mitochondrial genome of the murine species Mus terricolor (formerly Mus dunni) is reported and compared with the published sequence for the common laboratory mouse Mus musculus domesticus strain C57BL/6J. These species are of interest because xenomitochondrial cybrid mice were created that harbor M.
View Article and Find Full Text PDFThe ovulatory process is characterized by focalized extracellular matrix degradation at the apex of preovulatory follicles. Many studies have implicated the matrix metalloproteinases (MMPs) as potential mediators of follicle rupture. Objectives of this study were to determine localization and effect of the gonadotropin surge on temporal expression of MMP-1 and MMP-13 in bovine preovulatory follicles.
View Article and Find Full Text PDFThe unique features of mtDNA, together with the lack of a wide range of mouse cell mtDNA mutants, have hampered the creation of mtDNA mutant mice. To overcome these barriers mitochondrial defects were created by introducing mitochondria from different mouse species into Mus musculus domesticus (Mm) mtDNA-less (rho(0)) L cells. Introduction of the closely related Mus spretus (Ms) or the more divergent Mus dunni (Md) mitochondria resulted in xenocybrids exhibiting grossly normal respiratory function, but mild metabolic deficiencies, with 2- and 2.
View Article and Find Full Text PDFAVP and CRF are potent stimulators of pituitary ACTH secretion in cattle. Actions of AVP and CRF at the anterior pituitary are mediated by AVP receptor V3 (V3) and CRF receptor 1 (CRFR1). The primary objective of these studies was to determine the effect of systemic inflammatory stress on V3 and CRFR1 mRNAs in the bovine anterior pituitary.
View Article and Find Full Text PDFThe matrix metalloproteinases (MMPs) have been implicated in the ovulatory process, but the specific roles of individual MMPs are unclear. This study examined the effect of the preovulatory gonadotropin surge on localization and regulation of MMP-2, MMP-14, and tissue inhibitor of metalloproteinases-2 (TIMP-2) mRNA and MMP-2 and TIMP-2 activity in bovine preovulatory follicles and new corpora lutea (CL). Ovaries containing ovulatory follicles or new CL were collected at approximately 0, 6, 12, 18, 24, and 48 h (CL) after a GnRH-induced gonadotropin surge.
View Article and Find Full Text PDFThis study examined the effect of the preovulatory gonadotropin surge on the temporal and spatial regulation of tissue plasminogen activator (tPA), urokinase plasminogen activator (uPA), and uPA receptor (uPAR) mRNA expression and tPA, uPA, and plasmin activity in bovine preovulatory follicles and new corpora lutea collected at approximately 0, 6, 12, 18, 24, and 48 h after a GnRH-induced gonadotropin surge. Messenger RNAs for tPA, uPA, and uPAR were increased in a temporally specific fashion within 24 h of the gonadotropin surge. Localization of tPA mRNA was primarily to the granulosal layer, whereas both uPA and uPAR mRNAs were detected in both the granulosal and thecal layers and adjacent ovarian stroma.
View Article and Find Full Text PDF