Activatable microbubble contrast agents for contrast-enhanced ultrasound have a potential role for measuring physiologic and pathologic states in deep tissues, including tumor acidosis. In this study, we describe a novel observation of increased harmonic oscillation of phosphatidylcholine microbubbles (PC-MBs) in response to lower ambient pH using a clinical ultrasound scanner. MB echogenicity and nonlinear echoes were monitored at neutral and acidic pH using B-mode and Cadence contrast pulse sequencing (CPS), a harmonic imaging technique at 7.
View Article and Find Full Text PDFObjective: We have previously determined that direct formulation of a phospholipid-based perfluorobutane (PFB) emulsion using high-pressure homogenization produces monodispersed PFB nanodroplets (NDs) with relatively few non-PFB-filled NDs. In this article, we describe a simpler strategy to reproducibly formulate highly concentrated superheated PFB NDs using a probe sonicator, a more widely available tool.
Methods: Similar to the homogenization technique, sonicating at low power a solution of phospholipids with condensed PFB at -10°C consistently yields NDs with an encapsulation efficiency close to 100% and very few non-PFB-filled particles.
Activating patients' immune cells, either by reengineering them or treating them with bioactive molecules, has been a breakthrough in the field of immunotherapy and has revolutionized treatment, especially against cancer. As immune cells naturally home to tumors or injured tissues, labeling such cells holds promise for non-invasive tracking and biologic manipulation. Our study demonstrates that macrophages loaded with extremely low boiling point perfluorocarbon nanodroplets not only survive ultrasound-induced phase change but also maintain their phagocytic function.
View Article and Find Full Text PDFThe cytosolic innate immune sensor cyclic GMP-AMP synthase-stimulator of interferon genes (cGAS-STING) pathway is crucial for priming adaptive antitumour immunity through antigen-presenting cells (APCs). Natural agonists, such as cyclic dinucleotides (CDNs), activate the cGAS-STING pathway, but their clinical translation is impeded by poor cytosolic entry and serum stability, low specificity and rapid tissue clearance. Here we developed an ultrasound (US)-guided cancer immunotherapy platform using nanocomplexes composed of 2'3'-cyclic guanosine monophosphate-adenosine monophosphate (cGAMP) electrostatically bound to biocompatible branched cationic biopolymers that are conjugated onto APC-targeting microbubbles (MBs).
View Article and Find Full Text PDFPhase-change perfluorocarbon microdroplets were introduced over 2 decades ago to occlude downstream vessels in vivo. Interest in perfluorocarbon nanodroplets has recently increased to enable extravascular targeting, to rescue the weak ultrasound signal of perfluorocarbon droplets by converting them to microbubbles and to improve ultrasound-based therapy. Despite great scientific interest and advances, applications of phase-change perfluorocarbon agents have not reached clinical testing because of efficacy and safety concerns, some of which remain unexplained.
View Article and Find Full Text PDFPerfluorocarbon emulsion nanodroplets containing iron oxide nanoparticles (IONPs) within their inner perfluorohexane (PFH) core were prepared to investigate potential use as an acoustically activatable ultrasound contrast agent, with the hypothesis that incorporation of IONPs into the fluorous phase of a liquid perfluorocarbon emulsion would potentiate acoustic vaporization. IONPs with an oleic acid (OA) hydrophobic coating were synthesized through chemical co-precipitation. To suspend IONP in PFH, OA was exchanged with perfluorononanoic acid (PFNA) via ligand exchange to yield fluorophilic PFNA-coated IONPs (PFNA-IONPs).
View Article and Find Full Text PDFMaterials that degrade or dissociate in response to low power light promise to enable on-demand, precisely localized delivery of drugs or bioactive molecules in living systems. Such applications remain elusive because few materials respond to wavelengths that appreciably penetrate tissues. The photocage bromohydroxycoumarin (Bhc) is efficiently cleaved upon low-power ultraviolet (UV) and near-infrared (NIR) irradiation through one- or two-photon excitation, respectively.
View Article and Find Full Text PDFTherapies for macular degeneration and diabetic retinopathy require intravitreal injections every 4-8 weeks. Injections are uncomfortable, time-consuming, and carry risks of infection and retinal damage. However, drug delivery via noninvasive methods to the posterior segment of the eye has been a major challenge due to the eye's unique anatomy and physiology.
View Article and Find Full Text PDFNear-infrared (NIR) light-triggered release from polymeric capsules could make a major impact on biological research by enabling remote and spatiotemporal control over the release of encapsulated cargo. The few existing mechanisms for NIR-triggered release have not been widely applied because they require custom synthesis of designer polymers, high-powered lasers to drive inefficient two-photon processes, and/or coencapsulation of bulky inorganic particles. In search of a simpler mechanism, we found that exposure to laser light resonant with the vibrational absorption of water (980 nm) in the NIR region can induce release of payloads encapsulated in particles made from inherently non-photo-responsive polymers.
View Article and Find Full Text PDFSignificance: Reactive oxygen species and reactive nitrogen species (ROS/RNS) play an important role in cell signaling pathways. However, the increased production of these species may disrupt cellular homeostasis, giving rise to pathological conditions. Biomaterials that are responsive to ROS/RNS can be strategically used to specifically release therapeutics and diagnostic agents to regions undergoing oxidative stress.
View Article and Find Full Text PDFDeveloping polymer chemistries capable of on-demand, controlled depolymerization is an important tool in a broad variety of applications in science, technology, and industry. We report functionalized poly(caprolactone)s (PCL)s designed to allow on-demand and complete depolymerization through incorporation of pendant protected amino groups that, on deprotection, trigger nucleophilic attack and yield a single cyclic product. Two cleavable protecting groups were used to cap PCL: light sensititve -nitrobenzyl alcohol (ONB) and tert-butyl carbamate (Boc) (for proof of concept).
View Article and Find Full Text PDFAn activation mechanism based on encapsulated ultrasmall gadolinium oxide nanoparticles (Gd oxide NPs) in bioresponsive polymer capsules capable of triggered release in response to chemical markers of disease (i.e., acidic pH, H2O2) is presented.
View Article and Find Full Text PDFThe thermal behavior and phase structure of two series of gemini fluorocarbon/hydrocarbon diblock amphiphiles with the general formula (CnF2n+1CH2)(Cm - 2H2m - 3)CH-CH(CnF2n+1CH2)(Cm - 2H2m - 3), with n = 8, 10 and m = 6, 12, 14, 16, 18, 20 (abbreviated as di(FnHm)), have been investigated by differential scanning calorimetry, polarized optical and freeze-fracture transmission electron microscopies, dilatometry, and small-angle X-ray scattering (SAXS). The various terms of the series exhibit the same thermal behavior, essentially composed of two exothermal transitions, a low-temperature event that corresponds to the melting of the hydrocarbon chains at TH and a high-temperature transition associated with the melting of the fluorocarbon chains at TF. Below TH, a disordered plastic rotator phase, MLT, and above TH, a lamellar phase, MHT, were determined by SAXS experiments.
View Article and Find Full Text PDFWe report two polymers with UV- and NIR-removable end caps that respond to a single light activated event by complete cleavage of the polymer backbone via a self-immolative mechanism. Two photocleavable protecting groups were used to cap the polymers; o-nitrobenzyl alcohol (ONB) and bromo-coumarin (Bhc). GPC and (1)H NMR confirmed complete degradation of the ONB-containing polymer in response to UV.
View Article and Find Full Text PDFOxidative stress is caused predominantly by accumulation of hydrogen peroxide and distinguishes inflamed tissue from healthy tissue. Hydrogen peroxide could potentially be useful as a stimulus for targeted drug delivery to diseased tissue. However, current polymeric systems are not sensitive to biologically relevant concentrations of H(2)O(2) (50-100 μM).
View Article and Find Full Text PDFNonpolar fluorophilic/lipophilic tetrablock amphiphiles are investigated on the surface of water and on solid substrates using compression isotherms, Brewster angle microscopy, and atomic force microscopy. At low pressures, the tetrablocks form monolayers of closely packed surface hemimicelles. Further compression causes a 2D/3D transition.
View Article and Find Full Text PDFFluorine in bloom: A nonpolar fluorocarbon/hydrocarbon tetrablock self-assembles into a first monolayer consisting of an array of densely packed discrete circular surface micelles (dark); this layer is surmounted by a second layer of such nano-objects (light).
View Article and Find Full Text PDFUnderstanding and controlling the molecular organization of amphiphilic molecules at interfaces is essential for materials and biological sciences. When spread on water, the model amphiphiles constituted by C(n)F(2n+1)C(m)H(2m+1) (FnHm) diblocks spontaneously self-assemble into surface hemimicelles. Therefore, compression of monolayers of FnHm diblocks is actually a compression of nanometric objects.
View Article and Find Full Text PDF