Many patients with antiphospholipid syndrome had decreased ectonucleotidase activity on neutrophils and platelets, which enabled extracellular nucleotides to trigger neutrophil-platelet aggregates. This phenotype was replicated by treating healthy neutrophils and platelets with patient-derived antiphospholipid antibodies or ectonucleotidase inhibitors.
View Article and Find Full Text PDFMultiple neurotoxic proteinopathies co-exist within vulnerable neuronal populations in all major neurodegenerative diseases. Interactions between these pathologies may modulate disease progression, suggesting they may constitute targets for disease-modifying treatments aiming to slow or halt neurodegeneration. Pairwise interactions between superoxide dismutase 1 (SOD1), TAR DNA-binding protein 43 (TDP-43) and ubiquitin-binding protein 62/sequestosome 1 (p62) proteinopathies have been reported in multiple transgenic cellular and animal models of amyotrophic lateral sclerosis (ALS), however corresponding examination of these relationships in patient tissues is lacking.
View Article and Find Full Text PDFAberrant self-assembly and toxicity of wild-type and mutant superoxide dismutase 1 (SOD1) has been widely examined in silico, in vitro and in transgenic animal models of amyotrophic lateral sclerosis. Detailed examination of the protein in disease-affected tissues from amyotrophic lateral sclerosis patients, however, remains scarce. We used histological, biochemical and analytical techniques to profile alterations to SOD1 protein deposition, subcellular localization, maturation and post-translational modification in post-mortem spinal cord tissues from amyotrophic lateral sclerosis cases and controls.
View Article and Find Full Text PDFImportance: Juvenile amyotrophic lateral sclerosis (ALS) is a rare form of ALS characterized by age of symptom onset less than 25 years and a variable presentation.
Objective: To identify the genetic variants associated with juvenile ALS.
Design, Setting, And Participants: In this multicenter family-based genetic study, trio whole-exome sequencing was performed to identify the disease-associated gene in a case series of unrelated patients diagnosed with juvenile ALS and severe growth retardation.
Loss of function (LoF) mutations in Optineurin can cause recessive amyotrophic lateral sclerosis (ALS) with some heterozygous LoF mutations associated with dominant ALS. The molecular mechanisms underlying the variable inheritance pattern associated with OPTN mutations have remained elusive. We identified that affected members of a consanguineous Middle Eastern ALS kindred possessed a novel homozygous p.
View Article and Find Full Text PDFAberrantly expressed fused in sarcoma (FUS) is a hallmark of FUS-related amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). Wildtype FUS localises to synapses and interacts with mitochondrial proteins while mutations have been shown to cause to pathological changes affecting mitochondria, synapses and the neuromuscular junction (NMJ). This indicates a crucial physiological role for FUS in regulating synaptic and mitochondrial function that is currently poorly understood.
View Article and Find Full Text PDFAmyotrophic lateral sclerosis (ALS) is a disease with highly heterogenous causes, most of which remain unknown, a multitude of possible disease mechanisms, and no therapy currently available that can halt disease progression. However, recent advances in antisense oligonucleotides have made them a viable option for targeted therapeutics for patients. These molecules offer a method of targeting RNA that is highly specific, adaptable, and does not require viral delivery.
View Article and Find Full Text PDFAnalysis of 226 exome-sequenced UK cases of familial amyotrophic lateral sclerosis (ALS) and frontotemporal dementia identified 2 individuals who harbored a P497H and P506S UBQLN2 mutation, respectively (n = 0.9%). The P506S index case presented with behavioral variant frontotemporal dementia at the age of 54 years then progressed to ALS surviving 3 years.
View Article and Find Full Text PDFMutations in TANK binding kinase 1 (TBK1) have been linked to amyotrophic lateral sclerosis. Some TBK1 variants are nonsense and are predicted to cause disease through haploinsufficiency; however, many other mutations are missense with unknown functional effects. We exome sequenced 699 familial amyotrophic lateral sclerosis patients and identified 16 TBK1 novel or extremely rare protein-changing variants.
View Article and Find Full Text PDFFUS (fused in sarcoma) mislocalization and cytoplasmic aggregation are hallmark pathologies in FUS-related amyotrophic lateral sclerosis and frontotemporal dementia. Many of the mechanistic hypotheses have focused on a loss of nuclear function in the FUS-opathies, implicating dysregulated RNA transcription and splicing in driving neurodegeneration. Recent studies describe an additional somato-dendritic localization for FUS in the cerebral cortex implying a regulatory role in mRNA transport and local translation at the synapse.
View Article and Find Full Text PDFNeuronal loss in numerous neurodegenerative disorders has been linked to protein aggregation and oxidative stress. Emerging data regarding overlapping proteinopathy in traditionally distinct neurodegenerative diseases suggest that disease-modifying treatments targeting these pathological features may exhibit efficacy across multiple disorders. Here, we describe proteinopathy distinct from classic synucleinopathy, predominantly comprised of the anti-oxidant enzyme superoxide dismutase-1 (SOD1), in the Parkinson's disease brain.
View Article and Find Full Text PDFAmyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disorder. We screened 751 familial ALS patient whole-exome sequences and identified six mutations including p.D40G in the gene in 13 individuals.
View Article and Find Full Text PDFRecent progress revealed the complexity of RNA processing and its association to human disorders. Here, we unveil a new facet of this complexity. Complete loss of function of the ubiquitous splicing factor SFPQ affects zebrafish motoneuron differentiation cell autonomously.
View Article and Find Full Text PDFAmyotrophic lateral sclerosis (ALS) is a devastating neurodegenerative disease, which causes progressive and eventually fatal loss of motor function. Here, we describe genetic and pathologic characterization of brain tissue banked from 19 ALS patients over nearly 20 years at the Department of Anatomy and the Centre for Brain Research, University of Auckland, New Zealand. We screened for mutations in SOD1, TARDBP, FUS, and C9ORF72 genes and for neuropathology caused by phosphorylated TDP-43, dipeptide repeats (DPRs), and ubiquilin.
View Article and Find Full Text PDFTo identify genetic factors contributing to amyotrophic lateral sclerosis (ALS), we conducted whole-exome analyses of 1,022 index familial ALS (FALS) cases and 7,315 controls. In a new screening strategy, we performed gene-burden analyses trained with established ALS genes and identified a significant association between loss-of-function (LOF) NEK1 variants and FALS risk. Independently, autozygosity mapping for an isolated community in the Netherlands identified a NEK1 p.
View Article and Find Full Text PDFAmyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) are overlapping, fatal neurodegenerative disorders in which the molecular and pathogenic basis remains poorly understood. Ubiquitinated protein aggregates, of which TDP-43 is a major component, are a characteristic pathological feature of most ALS and FTD patients. Here we use genome-wide linkage analysis in a large ALS/FTD kindred to identify a novel disease locus on chromosome 16p13.
View Article and Find Full Text PDFDetergent-resistant, ubiquitinated and hyperphosphorylated Tar DNA binding protein 43 (TDP-43, encoded by TARDBP) neuronal cytoplasmic inclusions are the pathological hallmark in ∼95% of amyotrophic lateral sclerosis and ∼60% of frontotemporal lobar degeneration cases. We sought to explore the role for the heat shock response in the clearance of insoluble TDP-43 in a cellular model of disease and to validate our findings in transgenic mice and human amyotrophic lateral sclerosis tissues. The heat shock response is a stress-responsive protective mechanism regulated by the transcription factor heat shock factor 1 (HSF1), which increases the expression of chaperones that refold damaged misfolded proteins or facilitate their degradation.
View Article and Find Full Text PDFIntroduction: Mutations in the FUS gene have been shown to be a rare cause of amyotrophic lateral sclerosis (ALS-FUS) and whilst well documented clinically and genetically there have been relatively few neuropathological studies.Recent work suggested a possible correlation between pathological features such as frequency of basophilic inclusions in neurons and rate of clinical decline, other studies have revealed a discrepancy between the upper motor neuron features detected clinically and the associated pathology. The purpose of this study was to describe the pathological features associated with more recently discovered FUS mutations and reinvestigate those with well recognised mutations in an attempt to correlate the pathology with mutation and/or clinical phenotype.
View Article and Find Full Text PDFMutations in CHCHD10 have recently been reported as a cause of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia. To address the genetic contribution of CHCHD10 to ALS, we have screened a cohort of 425 UK ALS ± frontotemporal dementia patients and 576 local controls in all coding exons of CHCHD10 by Sanger sequencing. We identified a previously reported p.
View Article and Find Full Text PDFIntroduction: Amyotrophic lateral sclerosis (ALS) is a relentlessly progressive neurodegenerative disorder, and cytoplasmic inclusions containing transactive response (TAR) DNA binding protein (TDP-43) are present in ~90 % of cases. Here we report detailed pathology in human TDP-43 transgenic mice that recapitulate key features of TDP-43-linked ALS.
Results: Expression of human wild-type TDP-43 (TDP-43(WT)) caused no clinical or pathological phenotype, while expression of Q331K mutant (TDP-43(Q331K)) resulted in a non-lethal age-dependent motor phenotype, accompanied by cytoplasmic TDP-43 aggregation, mild neuronal loss, with astroglial and microglial activation in the motor cortex and spinal cord at 24 months.
Amyotrophic lateral sclerosis (ALS) is a complex fatal neurodegenerative disease characterized by progressive degeneration and loss of upper motor neurons in the cerebral cortex and lower motor neurons in brainstem and spinal cord. We established the frequencies of mutations in 4 major ALS-associated genes, SOD1, TARDBP, FUS, and C9ORF72 in a representative cohort of 85 Slovenian patients with sporadic form of ALS. Pathogenic massive hexanucleotide repeat expansion mutation in C9ORF72 was detected in 5.
View Article and Find Full Text PDFMutations in the gene encoding profilin 1 (PFN1) have recently been shown to cause amyotrophic lateral sclerosis (ALS), a fatal neurodegenerative disorder. We sequenced the PFN1 gene in a cohort of ALS patients (n = 485) and detected 2 novel variants (A20T and Q139L), as well as 4 cases with the previously identified E117G rare variant (∼ 1.2%).
View Article and Find Full Text PDFExome sequencing is an effective strategy for identifying human disease genes. However, this methodology is difficult in late-onset diseases where limited availability of DNA from informative family members prohibits comprehensive segregation analysis. To overcome this limitation, we performed an exome-wide rare variant burden analysis of 363 index cases with familial ALS (FALS).
View Article and Find Full Text PDF