Beyond our Solar System, aurorae have been inferred from radio observations of isolated brown dwarfs. Within our Solar System, giant planets have auroral emission with signatures across the electromagnetic spectrum including infrared emission of H and methane. Isolated brown dwarfs with auroral signatures in the radio have been searched for corresponding infrared features, but only null detections have been reported.
View Article and Find Full Text PDFCapturing planets in the act of losing their atmospheres provides rare opportunities to probe their evolution history. This analysis has been enabled by observations of the helium triplet at 10,833 angstrom, but past studies have focused on the narrow time window right around the planet's optical transit. We monitored the hot Jupiter HAT-P-32 b using high-resolution spectroscopy from the Hobby-Eberly Telescope covering the planet's full orbit.
View Article and Find Full Text PDFAstronomers have discovered thousands of planets outside the Solar System, most of which orbit stars that will eventually evolve into red giants and then into white dwarfs. During the red giant phase, any close-orbiting planets will be engulfed by the star, but more distant planets can survive this phase and remain in orbit around the white dwarf. Some white dwarfs show evidence for rocky material floating in their atmospheres, in warm debris disks or orbiting very closely, which has been interpreted as the debris of rocky planets that were scattered inwards and tidally disrupted.
View Article and Find Full Text PDF