Puberty is associated with transient insulin resistance that normally recedes at the end of puberty; however, in overweight children, insulin resistance persists, leading to an increased risk of type 2 diabetes. The mechanisms whereby pancreatic β cells adapt to pubertal insulin resistance, and how they are affected by the metabolic status, have not been investigated. Here, we show that puberty is associated with a transient increase in β cell proliferation in rats and humans of both sexes.
View Article and Find Full Text PDFThe potential to treat diabetes by increasing beta-cell mass is driving a major effort to identify beta-cell mitogens. Demonstration of mitogen activity in human beta cells is frequently performed in ex vivo assays. However, reported disparities in the efficacy of beta-cell mitogens led us to investigate the sources of this variability.
View Article and Find Full Text PDFThe free fatty-acid receptors FFAR1 (GPR40) and FFAR4 (GPR120) are implicated in the regulation of insulin secretion and insulin sensitivity, respectively. Although GPR120 and GPR40 share similar ligands, few studies have addressed possible interactions between these 2 receptors in the control of glucose homeostasis. Here we generated mice deficient in gpr120 (Gpr120KO) or gpr40 (Gpr40KO), alone or in combination (Gpr120/40KO), and metabolically phenotyped male and female mice fed a normal chow or high-fat diet.
View Article and Find Full Text PDFObjective: Maintenance of glucose homeostasis requires the precise regulation of hormone secretion from the endocrine pancreas. Free fatty acid receptor 4 (FFAR4/GPR120) is a G protein-coupled receptor whose activation in islets of Langerhans promotes insulin and glucagon secretion and inhibits somatostatin secretion. However, the contribution of individual islet cell types (α, β, and δ cells) to the insulinotropic and glucagonotropic effects of GPR120 remains unclear.
View Article and Find Full Text PDFAm J Physiol Endocrinol Metab
August 2019
The pancreatic β-cell responds to changes in the nutrient environment to maintain glucose homeostasis by adapting its function and mass. Nutrients can act directly on the β-cell and also indirectly through the brain via autonomic nerves innervating islets. Despite the importance of the brain-islet axis in insulin secretion, relatively little is known regarding its involvement in β-cell proliferation.
View Article and Find Full Text PDFMaladaptive wound healing responses to chronic tissue injury result in organ fibrosis. Fibrosis, which entails excessive extracellular matrix (ECM) deposition and tissue remodeling by activated myofibroblasts, leads to loss of proper tissue architecture and organ function; however, the molecular mediators of myofibroblast activation have yet to be fully identified. Here we identify soluble ephrin-B2 (sEphrin-B2) as a new profibrotic mediator in lung and skin fibrosis.
View Article and Find Full Text PDFAims/hypothesis: The mechanisms underlying pancreatic islet mass expansion have attracted considerable interest as potential therapeutic targets to prevent or delay the onset of type 2 diabetes. While several factors promoting beta cell proliferation have been identified, in the context of nutrient excess the roles of glucose or NEFA in relation to insulin resistance remain unclear. Here we tested the hypothesis that glucose and NEFA synergistically and reversibly promote beta cell proliferation in the context of nutrient-induced insulin resistance.
View Article and Find Full Text PDFObjective: G protein-coupled receptor (GPCR) signaling regulates insulin secretion and pancreatic β cell-proliferation. While much knowledge has been gained regarding how GPCRs are activated in β cells, less is known about the mechanisms controlling their deactivation. In many cell types, termination of GPCR signaling is controlled by the family of Regulators of G-protein Signaling (RGS).
View Article and Find Full Text PDFMouse β-cell-specific reporter lines have played a key role in diabetes research. Although the rat provides several advantages, its use has lagged behind the mouse due to the relative paucity of genetic models. In this report we describe the generation and characterization of transgenic rats expressing a Renilla luciferase (RLuc)-enhanced yellow fluorescent protein (YFP) fusion under control of a 9-kb genomic fragment from the rat ins2 gene (RIP7-RLuc-YFP).
View Article and Find Full Text PDFFFAR1/GPR40 is a seven-transmembrane domain receptor (7TMR) expressed in pancreatic β cells and activated by FFAs. Pharmacological activation of GPR40 is a strategy under consideration to increase insulin secretion in type 2 diabetes. GPR40 is known to signal predominantly via the heterotrimeric G proteins Gq/11.
View Article and Find Full Text PDFThe transcription factor Pancreatic and Duodenal Homeobox-1 (PDX-1) plays a major role in the development and function of pancreatic β-cells and its mutation results in diabetes. In adult β-cells, glucose stimulates transcription of the insulin gene in part by regulating PDX-1 expression, stability and activity. Glucose is also thought to modulate PDX-1 nuclear translocation but in vitro studies examining nucleo-cytoplasmic shuttling of endogenous or ectopically expressed PDX-1 in insulin-secreting cell lines have led to conflicting results.
View Article and Find Full Text PDFBackground: Noneosinophilic asthma has been regarded as a distinct phenotype characterized by a poor response to inhaled corticosteroids (ICS).
Objective: To determine whether noneosinophilic, steroid-naive asthmatic subjects show an improvement in asthma control, asthma symptoms and spirometry after four weeks of treatment with ICS, and whether they further benefit from the addition of a long-acting beta-2 agonists to ICS.
Methods: A randomized, double-blind, placebo-controlled, multicentre study comparing the efficacy of placebo versus inhaled fluticasone propionate 250 mcg twice daily for four weeks in mildly uncontrolled, steroid-naive asthmatic subjects with a sputum eosinophil count of 2% or less.
Objective: Prolonged exposure of pancreatic beta-cells to simultaneously elevated levels of fatty acids and glucose (glucolipotoxicity) impairs insulin gene transcription. However, the intracellular signaling pathways mediating these effects are mostly unknown. This study aimed to ascertain the role of extracellular-regulated kinases (ERKs)1/2, protein kinase B (PKB), and Per-Arnt-Sim kinase (PASK) in palmitate inhibition of insulin gene expression in pancreatic beta-cells.
View Article and Find Full Text PDFObjective: The G-protein-coupled receptor GPR40 is expressed in pancreatic beta-cells and is activated by long-chain fatty acids. Gene deletion studies have shown that GPR40 mediates, at least in part, fatty acid-amplification of glucose-induced insulin secretion (GSIS) but is not implicated in GSIS itself. However, the role of GPR40 in the long-term effects of fatty acids on insulin secretion remains controversial.
View Article and Find Full Text PDFObjective: Prolonged exposure of isolated islets of Langerhans to elevated levels of fatty acids, in the presence of high glucose, impairs insulin gene expression via a transcriptional mechanism involving nuclear exclusion of pancreas-duodenum homeobox-1 (Pdx-1) and loss of MafA expression. Whether such a phenomenon also occurs in vivo is unknown. Our objective was therefore to ascertain whether chronic nutrient oversupply inhibits insulin gene expression in vivo.
View Article and Find Full Text PDFLong-chain fatty acids amplify insulin secretion from the pancreatic beta-cell. The G-protein-coupled receptor GPR40 is specifically expressed in beta-cells and is activated by fatty acids; however, its role in acute regulation of insulin secretion in vivo remains unclear. To this aim, we generated GPR40 knockout (KO) mice and examined glucose homeostasis, insulin secretion in response to glucose and Intralipid in vivo, and insulin secretion in vitro after short- and long-term exposure to fatty acids.
View Article and Find Full Text PDFChildren who report sexual abuse (SA) have been found to display a range of internalizing and externalizing behavior problems. In the present study, a tree-based analysis was used to derive models predicting the variability of internalizing and externalizing behavior problems as well as dissociation symptoms in SA girls. Participants were 150 girls aged 4 to 12 years referred to a specialized pediatric clinic after disclosure of SA.
View Article and Find Full Text PDFBackground: Isocyanates are a common cause of occupational asthma (OA).
Objectives: We sought (1) to examine whether asthmatic reactions to isocyanates could be induced at concentrations as low as 1 ppb in subjects with OA caused by isocyanates previously diagnosed in our center and (2) to compare the inflammatory and functional changes after exposure to 1 and 15 ppb of isocyanates with similar total doses (concentration of isocyanates x duration of exposure).
Methods: Specific inhalation challenges were performed in 12 asthmatic subjects with previously confirmed OA caused by isocyanates.