Background: A considerable amount of evidence has favored ecological host-fitting, rather than coevolution, as the main mechanism responsible for trypanosome divergence. Nevertheless, beyond the study of human pathogenic trypanosomes, the genetic basis of host specificity among trypanosomes isolated from forest-inhabiting hosts remains largely unknown.
Methods: To test possible scenarios on ecological host-fitting and coevolution, we combined a host capture recapture strategy with parasite genetic data and studied the genetic variation, population dynamics and phylogenetic relationships of Trypanosoma terrestris, a recently described trypanosome species isolated from lowland tapirs in the Brazilian Pantanal and Atlantic Forest biomes.
Over 2 yr, we assessed the health of 35 lowland tapirs () in the Brazilian Cerrado (CE) biome, an area that is highly affected by human activities. This involved physical examinations, hematology and blood biochemistry, urinalysis, fecal parasitologic evaluation, microbial profiling of anatomic cavities and lesions, and serologic surveys for evidence of infectious agents. Research methods closely resembled those used in previous tapir health assessments in the Atlantic Forest (AF) and Pantanal (PA) biomes, allowing for a comparison among the three populations.
View Article and Find Full Text PDF