GATA factors play central roles in the programming of blood and cardiac cells during embryonic development. Using the experimentally accessible Xenopus and zebrafish models, we report observations regarding the roles of GATA-2 in the development of blood stem cells and GATA-4, -5, and -6 in cardiac development. We show that blood stem cells develop from the dorsal lateral plate mesoderm and GATA-2 is required at multiple stages.
View Article and Find Full Text PDFAs the fulcrum on which the balance between the opposing forces of tolerance and immunity has been shown to pivot, dendritic cells (DC) hold significant promise for immune intervention in a variety of disease states. Here we discuss how the directed differentiation of human pluripotent stem cells may address many of the current obstacles to the use of monocyte-derived DC in immunotherapy, providing a novel source of previously inaccessible DC subsets and opportunities for their scale-up, quality control and genetic modification. Indeed, given that it is the immunological legacy DC leave behind that is of therapeutic value, rather than their persistence per se, we propose that immunotherapy should serve as an early target for the clinical application of pluripotent stem cells.
View Article and Find Full Text PDFDr Anoop Shah speaks to Caroline Telfer, Commissioning Editor. Dr Anoop Shah is a British Heart Foundation Clinical Research Fellow at the University of Edinburgh (UK). He completed his undergraduate training at the University of Edinburgh and is now in the process of completing his specialist training in cardiology.
View Article and Find Full Text PDFProfessor Keith AA Fox speaks to Caroline Telfer, Commissioning Editor. Professor Keith AA Fox is the British Heart Foundation and the Duke of Edinburgh Professor of Cardiology at the University of Edinburgh (UK). He is a founding fellow of the European Society of Cardiology and is currently Chair of the Programme of the European Society of Cardiology.
View Article and Find Full Text PDFDr Jeanne Lawrence talks to Caroline Telfer, Commissioning Editor. Dr Jeanne Lawrence is an internationally recognized leader in the study of chromosome regulation by noncoding RNA and nuclear and genome organization. Her research bridges fundamental questions about genome regulation with clinical implications of recent advances in epigenetics.
View Article and Find Full Text PDF