Advancements in lab-on-a-chip technologies have revolutionized the single-cell analysis field. However, an accessible platform for in-depth screening and specific retrieval of single cells, which moreover enables studying diverse cell types and performing various downstream analyses, is still lacking. As a solution, FLUIDOT is introduced, a versatile microfluidic platform incorporating customizable microwells, optical tweezers and an interchangeable cell-retrieval system.
View Article and Find Full Text PDFSingle cell analyses have gained increasing interest over bulk approaches because of considerable cell-to-cell variability within isogenic populations. Herein, flow cytometry remains golden standard due to its high-throughput efficiency and versatility, although it does not allow to investigate the interdependency of cellular events over time. Starting from our microfluidic platform that enables to trap and retain individual cells on a fixed location over time, here, we focused on unraveling kinetic responses of single yeast cells upon treatment with the antifungal plant defensin HsAFP1.
View Article and Find Full Text PDFThe incidence of invasive fungal infections is increasing worldwide, resulting in more than 1.6 million deaths every year. Due to growing antifungal drug resistance and the limited number of currently used antimycotics, there is a clear need for novel antifungal strategies.
View Article and Find Full Text PDFRetrieving single cells of interest from an array of microwells for further off-chip analysis is crucial in numerous biological applications. To this end, several single cell manipulation strategies have been developed, including optical tweezers (OT). OT represent a unique approach for contactless cell retrieval, but their performance is often suboptimal due to nonspecific cell adhesion to the microwell surface.
View Article and Find Full Text PDFThe plant defensin HsAFP1 is characterized by broad-spectrum antifungal activity and induces apoptosis in Candida albicans. In this study, we performed a transcriptome analysis on C. albicans cultures treated with HsAFP1 to gain further insight in the antifungal mode of action of HsAFP1.
View Article and Find Full Text PDFHsAFP1, a plant defensin isolated from coral bells (), is characterized by broad-spectrum antifungal activity. Previous studies indicated that HsAFP1 binds to specific fungal membrane components, which had hitherto not been identified, and induces mitochondrial dysfunction and cell membrane permeabilization. In this study, we show that HsAFP1 reversibly interacts with the membrane phospholipid phosphatidic acid (PA), which is a precursor for the biosynthesis of other phospholipids, and to a lesser extent with various phosphatidyl inositol phosphates (PtdInsP's).
View Article and Find Full Text PDFAmphotericin B (AmB) induces oxidative and nitrosative stresses, characterized by production of reactive oxygen and nitrogen species, in fungi. Yet, how these toxic species contribute to AmB-induced fungal cell death is unclear. We investigated the role of superoxide and nitric oxide radicals in AmB's fungicidal activity in using a digital microfluidic platform, which enabled monitoring individual cells at a spatiotemporal resolution, and plating assays.
View Article and Find Full Text PDFPublic health problems are associated with device-associated biofilm infections, with being the major fungal pathogen. We previously identified potent antibiofilm combination treatment in which the antifungal plant defensin HsAFP1 is co-administered with caspofungin, the preferred antimycotic to treat such infections. In this study, we identified the smallest linear HsAFP1-derived peptide that acts synergistically with caspofungin or anidulafungin against as HsLin06_18, a 19-mer peptide derived from the C-terminal part of HsAFP1.
View Article and Find Full Text PDFPlant defensins are small, cationic peptides with a highly conserved 3D structure. They have been studied extensively in the past decades. Various biological activities have been attributed to plant defensins, such as anti-insect and antimicrobial activities, but they are also known to affect ion channels and display antitumor activity.
View Article and Find Full Text PDF