This study investigates the complex interaction between ozone and the autoxidation of 1-hexene over a wide temperature range (300-800 K), overlapping atmospheric and combustion regimes. It is found that atmospheric molecular mechanisms initiate the oxidation of 1-hexene from room temperature up to combustion temperatures, leading to the formation of highly oxygenated organic molecules. As temperature rises, the highly oxygenated organic molecules contribute to radical-branching decomposition pathways inducing a high reactivity in the low-temperature combustion region, i.
View Article and Find Full Text PDFDespite decades of research on alkene ozonolysis, the kinetic network of the archetypal case of ethylene (CHCH) with ozone (O) still lacks consensus. In this work, experimental evidence of an elusive diradical pathway is provided through the detection of the 2-hydroperoxyacetaldehyde ketohydroperoxide and its decomposition product, glyoxal.
View Article and Find Full Text PDF