Background: Particulate matter has been shown to stimulate the innate immune system and induce acute inflammation. Therefore, while nanotechnology has the potential to provide therapeutic formulations with improved efficacy, there are concerns such pharmaceutical preparations could induce unwanted inflammatory side effects. Accordingly, we aim to examine the utility of using the proteolytic activity signatures of cysteine proteases, caspase 1 and cathepsin S (CTSS), as biomarkers to assess particulate-induced inflammation.
View Article and Find Full Text PDFCysteine cathepsins, such as cathepsin S (CTSS), are implicated in the pathology of a wide range of diseases and are of potential utility as diagnostic and prognostic biomarkers. In previous work, we demonstrated the potency and efficiency of a biotinylated diazomethylketone (DMK)-based activity-based probe (ABP), biotin-PEG-LVG-DMK, for disclosure of recombinant CTSS and CTSS in cell lysates. However, the limited cell permeability of both the biotin and spacer groups restricted detection of CTSS to cell lysates.
View Article and Find Full Text PDFThe cysteine cathepsins are a family of closely related thiol proteases, normally found in the endosomal and lysosomal compartments of cells. A growing body of evidence has clearly linked the dysregulated activity of these proteases with many diseases and pathological conditions, offering therapeutic, prognostic and diagnostic potential. However, these proteases are synthesised as inactive precursors and once activated, are controlled by factors such as pH and presence of endogenous inhibitors, meaning that overall protein and activity levels do not necessarily correlate.
View Article and Find Full Text PDF