The peptidyl prolyl isomerases (PPI) of the cyclophilin type are distributed throughout human cells, including eight found solely in the nucleus. Nuclear cyclophilins are involved in complexes that regulate chromatin modification, transcription, and pre-mRNA splicing. This review collects what is known about the eight human nuclear cyclophilins: peptidyl prolyl isomerase H (PPIH), peptidyl prolyl isomerase E (PPIE), peptidyl prolyl isomerase-like 1 (PPIL1), peptidyl prolyl isomerase-like 2 (PPIL2), peptidyl prolyl isomerase-like 3 (PPIL3), peptidyl prolyl isomerase G (PPIG), spliceosome-associated protein CWC27 homolog (CWC27), and peptidyl prolyl isomerase domain and WD repeat-containing protein 1 (PPWD1).
View Article and Find Full Text PDFPre-mRNA splicing is a dynamic, multistep process that is catalyzed by the RNA (ribonucleic acid)-protein complex called the spliceosome. The spliceosome contains a core set of RNAs and proteins that are conserved in all organisms that perform splicing. In higher organisms, peptidyl-prolyl isomerase H (PPIH) directly interacts with the core protein pre-mRNA processing factor 4 (PRPF4) and both integrate into the pre-catalytic spliceosome as part of the tri-snRNP (small nuclear RNA-protein complex) subcomplex.
View Article and Find Full Text PDFWe describe the generation of microfluidic platforms for the co-culture of primary hepatocytes and endothelial cells; these platforms mimic the architecture of a liver sinusoid. This paper describes a progressional study of creating such a liver sinusoid on a chip system. Primary rat hepatocytes (PRHs) were co-cultured with primary or established endothelial cells in layers in single and dual microchannel configurations with or without continuous perfusion.
View Article and Find Full Text PDF