Introduction: Early adversity, impulsivity and sex all contribute to the risk of developing substance use disorder. Using rats, we examined how juvenile stress interacts with sex and cocaine to affect performance on a serial reversal task and a differential reinforcement of low rates 10 s (DRL10) task. The expression of dopamine-related proteins in several brain areas was also assessed.
View Article and Find Full Text PDFCircular RNAs (circRNAs) are a novel category of covalently-closed non-coding RNAs mainly derived from the back-splicing of exons or introns of protein-coding genes. In addition to their inherent high overall stability, circRNAs, have been shown to have strong functional effects on gene expression a multitude of transcriptional and post-transcriptional mechanisms. Furthermore, circRNAs, appear to be particularly enriched in the brain and able to influence both prenatal development and postnatal brain function.
View Article and Find Full Text PDFAlthough circular RNAs (circRNAs) are enriched in the brain, their relevance for brain function and psychiatric disorders is poorly understood. Here, we show that circHomer1 is inversely associated with relative HOMER1B mRNA isoform levels in both the orbitofrontal cortex (OFC) and stem-cell-derived neuronal cultures of subjects with psychiatric disorders. We further demonstrate that in vivo circHomer1 knockdown (KD) within the OFC can inhibit the synaptic expression of Homer1b mRNA.
View Article and Find Full Text PDFGene expression dysregulation in the brain has been associated with bipolar disorder, but little is known about the role of non-coding RNAs. Circular RNAs are a novel class of long noncoding RNAs that have recently been shown to be important in brain development and function. However, their potential role in psychiatric disorders, including bipolar disorder, has not been well investigated.
View Article and Find Full Text PDFFetal alcohol spectrum disorders (FASD) are heterogeneous disorders associated with alcohol exposure to the developing fetus that are characterized by a range of adverse neurodevelopmental deficits. Despite the numerous genomics and genetic studies on FASD models, the comprehensive molecular understanding of the mechanisms that underlie FASD-related neurodevelopmental deficits remains elusive. Circular RNAs (circRNAs) are a subtype of long non-coding RNAs that are derived from back-splicing and covalent joining of exons and/or introns of protein-coding genes.
View Article and Find Full Text PDF