Given the global panorama of demands in the health area, the development of biomaterials becomes irreducible for the maintenance and/or improvement in the quality of life of the human being. Aiming to reduce the impacts related to infections in the healing processes of the dermal structure, the present work proposes the development of polydimethylsiloxane (PDMS) based membranes with the incorporated polyhexamethylenebiguanide (PHMB) antimicrobial agent. In the present study, the antimicrobial and antibiofilm properties of polydimethylsiloxane (PDMS) films incorporated with 0.
View Article and Find Full Text PDFContinuous increases in the rates of tumor diseases have highlighted the need for identification of novel and inexpensive antitumor agents from natural sources. In this study, we investigated the effects of enriched fraction from hydroalcoholic Brazilian red propolis extract against Hep-2 cancer cell line. Initially 201 fractions were arranged in 12 groups according to their chromatographic characteristics (A-L).
View Article and Find Full Text PDFHere we investigated alterations in the protein profile of Hep-2 treated with red propolis using two-dimensional electrophoresis associated to mass spectrometry and apoptotic rates of cells treated with and without red propolis extracts through TUNEL and Annexin-V assays. A total of 325 spots were manually excised from the two-dimensional gel electrophoresis and 177 proteins were identified using LC-MS-MS. Among all proteins identified that presented differential expression, most were down-regulated in presence of red propolis extract at a concentration of 120 μg/mL (IC50): GRP78, PRDX2, LDHB, VIM and TUBA1A.
View Article and Find Full Text PDFPropolis is known for a long time for its health benefits and biological activities. Here, the red variety from the northeast of Brazil was chemically analyzed and extracts were investigated regarding their antioxidant and antitumor activity. Hydroalcoholic extracts, obtained from the red propolis, revealed polyphenol content, 2,2-diphenyl-1-picrylhydrazyl scavenging potential and enzymatic activities for catalase-like and superoxide dismutase-like.
View Article and Find Full Text PDF