Publications by authors named "Caroline O B Facey"

Fibroblast growth factors (FGFs) have diverse functions in the regulation of cell proliferation and differentiation in development, tissue maintenance, wound repair, and angiogenesis. The goal of this review paper is to (i) deliberate on the role of FGFs and FGF receptors (FGFRs) in different cancers, (ii) present advances in FGF-targeted cancer therapies, and (iii) explore cell signaling mechanisms that explain how FGF expression becomes dysregulated during cancer development. FGF is often mutated and overexpressed in cancer and the different FGF and FGFR isoforms have unique expression patterns and distinct roles in different cancers.

View Article and Find Full Text PDF

The goal of this paper is to discuss the role of ALDH isozymes in different cancers, review advances in ALDH1-targeting cancer therapies, and explore a mechanism that explains how ALDH expression becomes elevated during cancer development. ALDH is often overexpressed in cancer, and each isoform has a unique expression pattern and a distinct role in different cancers. The abnormal expression of ALDHs in different cancer types (breast, colorectal, lung, gastric, cervical, melanoma, prostate, and renal) is presented and correlated with patient prognosis.

View Article and Find Full Text PDF

mutation is the main driving mechanism of CRC development and leads to constitutively activated WNT signaling, overpopulation of ALDH+ stem cells (SCs), and incomplete differentiation. We previously reported that retinoic acid (RA) receptors are selectively expressed in ALDH+ SCs, which provides a way to target cancer SCs with retinoids to induce differentiation. : A functional link exists between the WNT and RA pathways, and mutation generates a WNT:RA imbalance that decreases retinoid-induced differentiation and increases ALDH+ SCs.

View Article and Find Full Text PDF

CD44 protein and its variant isoforms are expressed in cancer stem cells (CSCs), and various CD44 isoforms can have different functional roles in cells. Our goal was to investigate how different CD44 isoforms contribute to the emergence of stem cell (SC) overpopulation that drives colorectal cancer (CRC) development. Specific CD44 variant isoforms are selectively expressed in normal colonic SCs and become overexpressed in CRCs during tumor development.

View Article and Find Full Text PDF

One reason for lack of efficacy in cancer therapeutics is tumor heterogeneity. We hypothesize that tumor heterogeneity arises due to emergence of multiple cancer stem cell (CSC) subpopulations because miRNAs regulate expression of stem cell genes in CSCs. Our goal was to determine if: ) multiple CSC subpopulations exist in a human CRC cell population, and ) miRNAs are differentially expressed in the different CSC subpopulations.

View Article and Find Full Text PDF

One reason for lack of efficacy in cancer therapeutics is tumor heterogeneity. We hypothesize that tumor heterogeneity arises due to emergence of multiple Cancer Stem Cell (CSC) subpopulations because miRNAs regulate expression of stem cell genes in CSCs. Our goal was to determine if: i) multiple CSC subpopulations exist in a human CRC cell population, and ii) miRNAs are differentially expressed in the different CSC subpopulations.

View Article and Find Full Text PDF

HOX proteins are transcription factors that regulate stem cell (SC) function, but their role in the SC origin of cancer is under-studied. Aberrant expression of HOX genes occurs in many cancer types. Our goal is to ascertain how retinoic acid (RA) signaling and the regulation of expression might play a role in the SC origin of human colorectal cancer (CRC).

View Article and Find Full Text PDF

Retinoic acid (RA) agents possess anti-tumor activity through their ability to induce cellular differentiation. However, retinoids have not yet been translated into effective systemic treatments for most solid tumors. RA signaling is mediated by the following two nuclear retinoic receptor subtypes: the retinoic acid receptor (RAR) and the retinoic X receptor (RXR), and their isoforms.

View Article and Find Full Text PDF

MicroRNAs (miRNAs or miRs) have a critical role in regulating stem cells (SCs) during development and altered expression can cause developmental defects and/or disease. Indeed, aberrant miRNA expression leads to wide-spread transcriptional dysregulation which has been linked to many cancers. Mounting evidence also indicates a role for miRNAs in the development of the cancer SC (CSC) phenotype.

View Article and Find Full Text PDF

Background: About 70% of all breast cancers are estrogen receptor alpha positive (ER+) and are treated with antiestrogens. However, 50% of ER + tumors develop resistance to these drugs (endocrine resistance). In endocrine resistant cells, an adaptive pathway called the unfolded protein response (UPR) is elevated that allows cells to tolerate stress more efficiently than in sensitive cells.

View Article and Find Full Text PDF

Background/aim: The Jamaican "Guinea Hen Weed" (Petiveria alliacea L.) plant has been traditionally used in folklore medicine to treat a variety of diseases including cancer. In the present study we investigated on the therapeutic feasibility of dibenzyl trisulfide (DTS) (isolated from the Jamaican Guinea Hen Weed) as a potent small-molecule kinase inhibitor to treat cancer.

View Article and Find Full Text PDF

Abstract Breast cancer is the most common cancer diagnosed in women and its global incidence is rising rapidly. Adjuvant hormonal therapy, with antiestrogens (AE) such as tamoxifen and fulvestrant, is highly effective in the treatment of estrogen receptor-positive (ER+) breast cancers and is largely responsible for the increase in survival rates seen in the past four decades. However, nearly 50% of women with ER+ cancer display de novo or acquired resistance to AE therapies.

View Article and Find Full Text PDF

How breast cancer cells respond to the stress of endocrine therapies determines whether they will acquire a resistant phenotype or execute a cell-death pathway. After a survival signal is successfully executed, a cell must decide whether it should replicate. How these cell-fate decisions are regulated is unclear, but evidence suggests that the signals that determine these outcomes are highly integrated.

View Article and Find Full Text PDF

During metamorphosis of Manduca sexta, involution of labial glands follows an autophagic pathway towards programmed cell death (PCD). We looked for evidence of both caspase dependent and independent pathways of PCD by assaying for caspases -1, -2, -3, and -6, proteasomal protease, and cathepsins B & L, using fluorogenic substrates and aldehyde and chloromethylketone inhibitors. The substrates FR-AMC and RR-AMC, preferentially degraded by cathepsins B and L, were the most rapidly degraded, increasing in rate as the gland involuted.

View Article and Find Full Text PDF