Most studies of infections at mucosal surfaces have focused on the acute phase of the disease. Consequently, little is known about the molecular processes that underpin tissue recovery and the long-term consequences postinfection. Here, we conducted temporal deep quantitative proteomic analysis of colonic intestinal epithelial cells (cIECs) from mice infected with the natural mouse pathogen Citrobacter rodentium over time points corresponding to the late steady-state phase (10 days postinfection [DPI]), the clearance phase (13 to 20 DPI), and 4 weeks after the pathogen has been cleared (48 DPI).
View Article and Find Full Text PDFThe gut microbiota plays a crucial role in susceptibility to enteric pathogens, including Citrobacter rodentium, a model extracellular mouse pathogen that colonizes the colonic mucosa. C. rodentium infection outcomes vary between mouse strains, with C57BL/6 and C3H/HeN mice clearing and succumbing to the infection, respectively.
View Article and Find Full Text PDFCitrobacter rodentium, a natural mouse pathogen which colonises the colon of immuno-competent mice, provides a robust model for interrogating host-pathogen-microbiota interactions in vivo. This model has been key to providing new insights into local host responses to enteric infection, including changes in intestinal epithelial cell immunometabolism and mucosal immunity. C.
View Article and Find Full Text PDFInfections with many Gram-negative pathogens, including , , , and , rely on type III secretion system (T3SS) effectors. We hypothesized that while hijacking processes within mammalian cells, the effectors operate as a robust network that can tolerate substantial contractions. This was tested in vivo using the mouse pathogen (encoding 31 effectors).
View Article and Find Full Text PDFHeme is an essential metabolite for most life on earth. Bacterial pathogens almost universally require iron to infect a host, often acquiring this nutrient in the form of heme. The Gram-negative pathogen is no exception, where heme acquisition and metabolism are known to be crucial for both chronic and acute infections.
View Article and Find Full Text PDFThe mouse pathogen Citrobacter rodentium is used to model infections with enterohaemorrhagic and enteropathogenic Escherichia coli (EHEC and EPEC). Pathogenesis is commonly modelled in mice developing mild disease (e.g.
View Article and Find Full Text PDFCitrobacter rodentium is an extracellular enteric mouse-specific pathogen used to model infections with human pathogenic Escherichia coli and inflammatory bowel disease. C. rodentium injects type III secretion system effectors into intestinal epithelial cells (IECs) to target inflammatory, metabolic and cell survival pathways and establish infection.
View Article and Find Full Text PDFWe used the mouse attaching and effacing (A/E) pathogen , which models the human A/E pathogens enteropathogenic and enterohemorrhagic (EPEC and EHEC), to temporally resolve intestinal epithelial cell (IEC) responses and changes to the microbiome during infection. We found the host to be unresponsive during the first 3 days postinfection (DPI), when resides in the caecum. In contrast, at 4 DPI, the day of colonic colonization, despite only sporadic adhesion to the apex of the crypt, we observed robust upregulation of cell cycle and DNA repair processes, which were associated with expansion of the crypt Ki67-positive replicative zone, and downregulation of multiple metabolic processes (including the tricarboxylic acid [TCA] cycle and oxidative phosphorylation).
View Article and Find Full Text PDFThe development of innovative high-throughput genomics and metabolomics technologies has considerably expanded our understanding of the commensal microorganisms residing within the human body, collectively termed the microbiota. In recent years, the microbiota has been reported to have important roles in multiple aspects of human health, pathology and host-pathogen interactions. One function of commensals that has attracted particular interest is their role in protection against pathogens and pathobionts, a concept known as colonization resistance.
View Article and Find Full Text PDFWe investigated the role of commensals at the peak of infection with the colonic mouse pathogen Citrobacter rodentium. Bioluminescent and kanamycin (Kan)-resistant C. rodentium persisted avirulently in the cecal lumen of mice continuously treated with Kan.
View Article and Find Full Text PDF