The quality of the prosthetic-neural interface is a critical point for cochlear implant efficiency. It depends not only on technical and anatomical factors such as electrode position into the cochlea (depth and scalar placement), electrode impedance, and distance between the electrode and the stimulated auditory neurons, but also on the number of functional auditory neurons. The efficiency of electrical stimulation can be assessed by the measurement of e-CAP in cochlear implant users.
View Article and Find Full Text PDFFrequency-place mismatch often occurs after cochlear implantation, yet its effect on speech perception outcome remains unclear. In this article, we propose a method, based on cochlea imaging, to determine the cochlear place-frequency map. We evaluated the effect of frequency-place mismatch on speech perception outcome in subjects implanted with 3 different lengths of electrode arrays.
View Article and Find Full Text PDFTranstympanic promontory stimulation test (TPST) has been suggested to be a useful tool in predicting postoperative outcomes in patients at risk of poor auditory neuron functioning, especially after a long auditory deprivation. However, only sparse data are available on this topic. This study aimed at showing correlations between the auditory nerve dynamic range, evaluated by TPST, the electrical dynamic range of the cochlear implant and speech perception outcome.
View Article and Find Full Text PDF