Transplantation experiments have shown that neurologic deficits may be reversed by engrafting fresh tissue or engineered cells within dysfunctional neural circuitry. In experimental and clinical settings, this approach has provided insights into the pathology and treatment of neurologic diseases, primarily movement disorders. The present experiments were designed to investigate whether a similar strategy is feasible as a method to investigate, and perhaps repair, circuitry integral to emotional disorders.
View Article and Find Full Text PDFThe development of the serotonergic (5HT) and dopaminergic (DA) systems may contribute to the onset of psychotic disorders during late adolescence and early adulthood. Previous studies in our laboratory have suggested that these systems may compete for functional territory on neurons during development, as lesions of the serotonergic system at postnatal day 5 (P5) result in an increase in the density of dopaminergic fibers in rat medial prefrontal cortex (mPFC). In the present study, the dopaminergic system of P5 rats was lesioned with intracisternal injections of 6-hydroxydopamine (6-OHDA).
View Article and Find Full Text PDF