Background/objectives: Biogenic volatile organic compounds (BVOCs), extensively studied in terrestrial plants with global emissions around 1 PgC yr, are also produced by marine organisms. However, benthic species, especially seagrasses, are understudied despite their global distribution (177,000-600,000 km). This study aims to examine BVOC emissions from key Mediterranean seagrass species (, , , and ) in marine and coastal lagoon environments.
View Article and Find Full Text PDFWith climate change, an aggravation in summer drought is expected in the Mediterranean region. To assess the impact of such a future scenario, we compared the response of Quercus pubescens, a drought-resistant deciduous oak species, to long-term amplified drought (AD) (partial rain exclusion in natura for 10 years) and natural drought (ND). We studied leaf physiological and physico-chemical trait responses to ND and AD over the seasonal cycle, with a focus on chemical traits including major groups of central (photosynthetic pigments and plastoquinones) and specialized (tocochromanols, phenolic compounds, and cuticular waxes) metabolites.
View Article and Find Full Text PDFIn Mediterranean ecosystems, the projected rainfall reduction of up to 30% may alter plant-soil interactions, particularly litter decomposition and Home Field Advantage (HFA). We set up a litter transplant experiment in the three main forests encountered in the northern part of the Medi-terranean Basin (dominated by either , , or ) equipped with a rain exclusion device, allowing an increase in drought either throughout the year or concentrated in spring and summer. Senescent leaves and needles were collected under two precipitation treatments (natural and amplified drought plots) at their "home" forest and were left to decompose in the forest of origin and in other forests under both drought conditions.
View Article and Find Full Text PDFThe intensification of summer drought expected with climate change can induce metabolism modifications in plants to face such constraints. In this experiment, we used both a targeted approach focused on flavonoids, as well as an untargeted approach, to study a broader fraction of the leaf metabolome of exposed to amplified drought. A forest site equipped with a rainfall exclusion device allowed reduction of natural rainfall by ~30% over the tree canopy.
View Article and Find Full Text PDFBiogenic volatile organic compounds (BVOC) emitted by plants can originate from both anabolism (metabolite production through anabolic processes) and catabolism (metabolite degradation by oxidative reactions). Drought can favor leaf oxidation by increasing the oxidative pressure in plant cells. Thus, under the precipitation decline predicted for the Mediterranean region, it can be expected both strong oxidation of anabolic BVOC within leaves and, as a result, enhanced catabolic BVOC emissions.
View Article and Find Full Text PDFMonoterpene emissions of Quercus coccifera L. were repeatedly measured during the two years following the spreading of a sewage sludge compost at rates of 50 Mg ha⁻¹ and 100 Mg ha⁻¹, in a twelve-year-old post-fire Mediterranean shrubland. We also monitored the patterns of change in soil and leaf nutrient content, plant water potential, chlorophyll fluorescence, and plant growth.
View Article and Find Full Text PDF