Human performance is modulated by circadian rhythmicity and homeostatic sleep pressure. Whether and how this interaction is represented at the regional brain level has not been established. We quantified changes in brain responses to a sustained-attention task during 13 functional magnetic resonance imaging sessions scheduled across the circadian cycle, during 42 hours of wakefulness and after recovery sleep, in 33 healthy participants.
View Article and Find Full Text PDFDaily variations in the environment have shaped life on Earth, with circadian cycles identified in most living organisms. Likewise, seasons correspond to annual environmental fluctuations to which organisms have adapted. However, little is known about seasonal variations in human brain physiology.
View Article and Find Full Text PDFPredicting a particular cognitive state from a specific pattern of fMRI voxel values is still a methodological challenge. Decoding brain activity is usually performed in highly controlled experimental paradigms characterized by a series of distinct states induced by a temporally constrained experimental design. In more realistic conditions, the number, sequence and duration of mental states are unpredictably generated by the individual, resulting in complex and imbalanced fMRI data sets.
View Article and Find Full Text PDFThe activity patterns adopted by brain neuronal populations differ dramatically between wakefulness and sleep. However, these vigilance states are not independent and they reciprocally interact. Here, we provide evidence that in humans, regional brain activity during wakefulness is influenced by sleep regulation, namely by the interaction between sleep homeostasis and circadian signals.
View Article and Find Full Text PDFReciprocal interactions between wakefulness and sleep substantially influence human brain function in both states of vigilance. On the one hand, there is evidence that regionally-specialized brain activity during wakefulness is modulated by the interaction between a local use-dependent buildup of homeostatic sleep pressure and circadian signals. On the other hand, brain activity during sleep, although mainly constrained by genuine sleep oscillations, shows wake-dependent regionally-specific modulations, which are involved in the dissipation of local homeostatic sleep pressure and memory consolidation.
View Article and Find Full Text PDFRecent neuroimaging studies characterized the neural correlates of slow waves and spindles during human non-rapid eye movement (NREM) sleep. They showed that significant activity was consistently associated with slow (> 140 μV) and delta waves (75-140 μV) during NREM sleep in several cortical areas including inferior frontal, medial prefrontal, precuneus, and posterior cingulate cortices. Unexpectedly, slow waves were also associated with transient responses in the pontine tegmentum and in the cerebellum.
View Article and Find Full Text PDFThis study characterizes hypnagogic hallucinations reported during a polygraphically recorded 90-min daytime nap following or preceding practice of the computer game Tetris. In the experimental group (N = 16), participants played Tetris in the morning for 2 h during three consecutive days, while in a first control group (N = 13, controlling the effect of experience) participants did not play any game, and in a second control group (N = 14, controlling the effect of anticipation) participants played Tetris after the nap. During afternoon naps, participants were repetitively awakened 15, 45, 75, 120 or 180 s after the onset of S1, and were asked to report their mental content.
View Article and Find Full Text PDFDuring the last two decades, functional neuroimaging has been used to characterize the regional brain function during sleep in humans, at the macroscopic systems level. In addition, the topography of brain activity, especially during rapid eye movement sleep, was thought to be compatible with the general features of dreams. In contrast, the neural correlates of dreams remain largely unexplored.
View Article and Find Full Text PDF