Human African trypanosomiasis (HAT) and African animal trypanosomosis (AAT) are devastating diseases spread by tsetse flies (Glossina spp.), affecting humans and livestock, respectively. Current efforts to manage these diseases by eliminating the vector through the sterile insect technique (SIT) require transportation of irradiated late-stage tsetse pupae under chilling, which has been reported to reduce the biological quality of emerged flies.
View Article and Find Full Text PDFTsetse flies are cyclic vectors of Trypanosoma parasites, which cause debilitating diseases in humans and animals. To decrease the disease burden, the number of flies is reduced using the sterile insect technique (SIT), where male flies are sterilized through irradiation and released into the field. This procedure requires the mass rearing of high-quality male flies able to compete with wild male flies for mating with wild females.
View Article and Find Full Text PDFTsetse eradication continues to be a top priority for African governments including that of Senegal, which embarked on a project to eliminate Glossina palpalis gambiensis from the Niayes area, following an area-wide integrated pest management approach with an SIT component. A successful SIT programme requires competitive sterile males of high biological quality. This may be hampered by handling processes including irradiation and the release mechanisms, necessitating continued improvement of these processes, to maintain the quality of flies.
View Article and Find Full Text PDFObjective: Animal African trypanosomiasis (AAT) is a life-threatening vector-borne disease, caused by trypanosome parasites, which are principally transmitted by tsetse flies. In Kenya, the prevalence of drug-resistant trypanosomes in endemic regions remains poorly understood. The objective of this study was to establish AAT point prevalence, drug susceptibility of associated trypanosomes, and measure infectivity by multiple AAT mammalian hosts to tsetse flies in Shimba hills, a resource-poor region with high bovine trypanosomiasis prevalence and morbidity rates at the coast of Kenya.
View Article and Find Full Text PDFObjective: In Sub-Saharan Africa, there is an increase in trypanosome non-susceptibility to multiple trypanocides, but limited information on judicious trypanocide use is accessible to smallholder farmers and agricultural stakeholders in disease endemic regions, resulting in widespread multi-drug resistance. Huge economic expenses and the laborious nature of extensive field studies have hindered collection of the requisite large-scale prospective datasets required to inform disease management. We examined the efficacy of community-led data collection strategies using smartphones by smallholder farmers to acquire robust datasets from the trypanosomiasis endemic Shimba hills region in Kenya.
View Article and Find Full Text PDF