Publications by authors named "Caroline J Springer"

Increased stiffness in the extracellular matrix (ECM) contributes to tumor progression and metastasis. Therefore, stromal modulating therapies and accompanying biomarkers are being developed to target ECM stiffness. Magnetic resonance (MR) elastography can noninvasively and quantitatively map the viscoelastic properties of tumors and thus has clear clinical applications.

View Article and Find Full Text PDF

Sunitinib and pazopanib are antiangiogenic tyrosine kinase inhibitors (TKI) used to treat metastatic renal cell carcinoma (RCC). However, the ability of these drugs to extend progression-free and overall survival in this patient population is limited by drug resistance. It is possible that treatment outcomes in RCC patients could be improved by rationally combining TKIs with other agents.

View Article and Find Full Text PDF

Purpose: The purpose of this study is to evaluate if the differential exchange rates with bulk water between amine and amide protons can be exploited using chemical exchange saturation transfer magnetic resonance (CEST-MR) to monitor the release of glutamate induced by carboxypeptidase G2 (CPG2), an enzyme utilized in cancer gene therapy.

Procedures: Z spectra of solutions of the CPG2 substrate, 3,5-difluorobenzoyl-L-glutamate (amide), and glutamate (amine) were acquired at 11.7 T, 37 °C, across different pH (5-8).

View Article and Find Full Text PDF

The RAS-RAF-MEK-ERK pathway is hyperactivated in 30% of human cancers. BRAF is a serine-threonine kinase, belonging to this pathway that is mutated with high frequency in human melanoma and other cancers thus BRAF is an important therapeutic target in melanoma. We have designed inhibitors of BRAF based on 2,4,5-trisubstituted imidazoles with naphthyl and benzothiophene-4-substituents.

View Article and Find Full Text PDF

Unlabelled: NRAS mutations are common in human melanoma. To produce a mouse model of NRAS-driven melanoma, we expressed oncogenic NRAS (NRAS(G12D)) in mouse melanocytes. When NRAS(G12D) was expressed in the melanocytes of developing embryos, it induced melanocyte proliferation and congenital melanocytic lesions reminiscent of human blue nevi but did not induce cutaneous melanoma.

View Article and Find Full Text PDF

Introduction: After its identification as an oncogene in 2002, mutant BRAF has become the target of a number of drug discovery programmes, primarily aimed at the treatment of late stage or unresectable melanoma. Some of the drugs thus developed, such as vemurafenib and dabrafenib, show impressive responses in melanoma patients harbouring a BRAF mutation.

Areas Covered: This review summarises the patent literature on BRAF from 2006 to 2012, focusing on the specific areas of inhibitors of mutant BRAF, drug combinations including BRAF inhibitors, diagnostic methods for use with mutant BRAF inhibitors & diagnosis and treatment of mutant BRAF cancers resistant to BRAF inhibitors.

View Article and Find Full Text PDF

Sunitinib is a potent and clinically approved tyrosine kinase inhibitor that can suppress tumour growth by inhibiting angiogenesis. However, conflicting data exist regarding the effects of this drug on the growth of metastases in preclinical models. Here we use 4T1 and RENCA tumour cells, which both form lung metastases in Balb/c mice, to re-address the effects of sunitinib on the progression of metastatic disease in mice.

View Article and Find Full Text PDF

Background: Cutaneous squamous-cell carcinomas and keratoacanthomas are common findings in patients treated with BRAF inhibitors.

Methods: We performed a molecular analysis to identify oncogenic mutations (HRAS, KRAS, NRAS, CDKN2A, and TP53) in the lesions from patients treated with the BRAF inhibitor vemurafenib. An analysis of an independent validation set and functional studies with BRAF inhibitors in the presence of the prevalent RAS mutation was also performed.

View Article and Find Full Text PDF

Over the last few years, BRAF has emerged as a validated target in melanoma. This review summarises recent advances in the development of BRAF inhibitors, focussing on agents that have been assessed clinically.

View Article and Find Full Text PDF

The pseudomonad protein, carboxypeptidase G2 (CPG2), is a prodrug-activating enzyme utilized in the targeted chemotherapy strategies of antibody- and gene-directed enzyme prodrug therapy (ADEPT and GDEPT). We have developed a noninvasive imaging approach to monitor CPG2 activity in vivo that will facilitate the preclinical and clinical development of CPG2-based ADEPT and GDEPT strategies. Cleavage of the novel reporter probe, 3,5-difluorobenzoyl-L-glutamic acid (3,5-DFBGlu), by CPG2, in human colon adenocarcinoma WiDr xenografts engineered to stably express CPG2, was monitored using (19)F MRSI.

View Article and Find Full Text PDF

Oncogenic BRAF is a critical driver of proliferation and survival and is thus a validated therapeutic target in cancer. We have developed a potent inhibitor, termed 1t (CCT239065), of the mutant protein kinase, (V600E)BRAF. 1t inhibits signaling downstream of (V600E)BRAF in cancer cells, blocking DNA synthesis, and inhibiting proliferation.

View Article and Find Full Text PDF

V-RAF murine sarcoma viral oncogene homolog B1 (BRAF) is a serine/threonine-specific protein kinase that is mutated with high frequency in cutaneous melanoma, and many other cancers. Inhibition of mutant BRAF is an attractive therapeutic approach for the treatment of melanoma. A triarylimidazole BRAF inhibitor bearing a phenylpyrazole group (dimethyl-[2-(4-{5-[4-(1H-pyrazol-3-yl)-phenyl]-4-pyridin-4-yl-1H-imidazol-2-yl}-phenoxy)-ethyl]-amine, 1a) was identified as an active BRAF inhibitor.

View Article and Find Full Text PDF

Mutated BRAF serine/threonine kinase is implicated in several types of cancer, with particularly high frequency in melanoma and colorectal carcinoma. We recently reported on the development of BRAF inhibitors based on a tripartite A-B-C system featuring an imidazo[4,5]pyridin-2-one group hinge binder. Here we present the design, synthesis, and optimization of a new series of inhibitors with a different A-B-C system that has been modified by the introduction of a range of novel hinge binders (A ring).

View Article and Find Full Text PDF

We describe the design, synthesis, and optimization of a series of new inhibitors of V-RAF murine sarcoma viral oncogene homologue B1 (BRAF), a kinase whose mutant form (V600E) is implicated in several types of cancer, with a particularly high frequency in melanoma. Our previously described inhibitors with a tripartite A-B-C system (where A is a hinge binding pyrido[4,5-b]imidazolone system, B is an aryl spacer group, and C is a heteroaromatic group) were potent against purified (V600E)BRAF in vitro but were less potent in accompanying cellular assays. Substitution of different aromatic heterocycles for the phenyl based C-ring is evaluated herein as a potential means of improving the cellular potencies of these inhibitors.

View Article and Find Full Text PDF

We recently reported on the development of a novel series of BRAF inhibitors based on a tripartite A-B-C system characterized by a para-substituted central aromatic core connected to an imidazo[4,5]pyridin-2-one scaffold and a substituted urea linker. Here, we present a new series of BRAF inhibitors in which the central phenyl ring connects to the hinge binder and substrate pocket of BRAF with a meta-substitution pattern. The optimization of this new scaffold led to the development of low-nanomolar inhibitors that permits the use of a wider range of linkers and terminal C rings while enhancing the selectivity for the BRAF enzyme in comparison to the para series.

View Article and Find Full Text PDF

We describe a mechanism of tumorigenesis mediated by kinase-dead BRAF in the presence of oncogenic RAS. We show that drugs that selectively inhibit BRAF drive RAS-dependent BRAF binding to CRAF, CRAF activation, and MEK-ERK signaling. This does not occur when oncogenic BRAF is inhibited, demonstrating that BRAF inhibition per se does not drive pathway activation; it only occurs when BRAF is inhibited in the presence of oncogenic RAS.

View Article and Find Full Text PDF

We recently demonstrated that expression of (V600E)Braf in mature mouse melanocytes induces melanoma. Here, we show that expression of (V600E)Braf using the tyrosinase promoter leads to an unexpected embryonic lethality, with the animals dying before, at, or shortly after birth. The mice suffer from a range of developmental defects in the skin, the brain, the eyes and the heart, tissues that are normally colonized by melanocytes.

View Article and Find Full Text PDF

Carboxypeptidase G2 (CPG2) is a bacterial enzyme that is currently employed in a range of targeted cancer chemotherapy strategies such as gene-directed enzyme prodrug therapy (GDEPT). Employing dynamic nuclear polarization (DNP) and natural abundance (13)C magnetic resonance spectroscopy (MRS), we observed the CPG2-mediated conversion of a novel hyperpolarized reporter probe 3,5-difluorobenzoyl-L-glutamic acid (3,5-DFBGlu) to 3,5-difluorobenzoic acid (3,5-DFBA) and L-glutamic acid (L-Glu) in vitro. Isotopic labeling of the relevant nuclei with (13)C in 3,5-DFBGlu or related substrates will yield a further factor of 100 increase in the signal-to-noise.

View Article and Find Full Text PDF

BRAF, a serine/threonine specific protein kinase that is part of the MAPK pathway and acts as a downstream effector of RAS, is a potential therapeutic target in melanoma. We have developed a series of small-molecule BRAF inhibitors based on a 1H-imidazo[4,5-b]pyridine-2(3H)-one scaffold (ring A) as the hinge binding moiety and a number of substituted phenyl rings C that interact with the allosteric binding site. The introduction of various groups on the central phenyl ring B combined with appropriate A- and C-ring modifications afford very potent compounds that inhibit (V600E)BRAF kinase activity in vitro and oncogenic BRAF signaling in melanoma cells.

View Article and Find Full Text PDF

BRAF is a serine/threonine kinase that is mutated in a range of cancers, including 50-70% of melanomas, and has been validated as a therapeutic target. We have designed and synthesized mutant BRAF inhibitors containing pyridoimidazolone as a new hinge-binding scaffold. Compounds have been obtained which have low nanomolar potency for mutant BRAF (12 nM for compound 5i) and low micromolar cellular potency against a mutant BRAF melanoma cell line, WM266.

View Article and Find Full Text PDF

BRAF, a serine/threonine kinase, plays a key role in the development of certain types of cancer, particularly melanoma. 2-(3,4,5-Trimethoxyphenylamino)-6-(3-acetamidophenyl)-pyrazine, 1, was identified as a low micromolar (IC 50 = 3.5 microM) BRAF inhibitor from a high-throughput screen of a library of 23000 compounds.

View Article and Find Full Text PDF

A concise synthesis of long-chain poly(ethylene glycol) (PEG) of defined molecular weight up to 29 ethyleneoxy units is described. These PEG diols were converted in a two-step synthesis into Fmoc-protected PEG amino acids, suitable as long linkers and compatible with solid-phase peptide synthesis. Long PEG chains (MW > 1000) can be readily synthesized with this method, which has the advantage of defined single molecular weight products over the comparable commercial polymers.

View Article and Find Full Text PDF