Understanding the genetic, molecular and evolutionary basis of cysteine-stabilized antifungal proteins (AFPs) from fungi is important for understanding whether their function is mainly defensive or associated with fungal growth and development. In the current study, a transcriptome meta-analysis of the Aspergillus niger γ-core protein AnAFP was performed to explore co-expressed genes and pathways, based on independent expression profiling microarrays covering 155 distinct cultivation conditions. This analysis uncovered that anafp displays a highly coordinated temporal and spatial transcriptional profile which is concomitant with key nutritional and developmental processes.
View Article and Find Full Text PDFMutations of the NPM1 gene (NPM1mut) are among the most common genetic alterations in acute myeloid leukemia and are suitable for minimal residual disease detection. We retrospectively investigated the prognostic impact of NPM1mut-based minimal residual disease detection from bone marrow for development of relapse by using a newly developed real-time polymerase chain reaction based on locked nucleic acid-containing primers in 174 patients, 155 of whom were treated within prospective protocols. The prognostic value of 5 cutoff values after completion of treatment or after allogeneic transplantation was studied by using cause-specific hazard models.
View Article and Find Full Text PDFAutotaxin (ATX) has been reported to act as a motility and growth factor in a variety of cancer cells. The ATX protein acts as a secreted lysophospholipase D by converting lysophosphatidylcholine (LPC) to lysophosphatidic acid (LPA), which signals via G-protein-coupled receptors and has important functions in cell migration and proliferation. This study demonstrates that ATX expression is specifically upregulated and functionally active in acute myeloid leukemia (AML) harboring an internal tandem duplication (ITD) mutation of the FLT3 receptor gene.
View Article and Find Full Text PDF