Publications by authors named "Caroline Hasler"

Tofacitinib is an oral JAK inhibitor indicated for the treatment of rheumatoid arthritis (RA). The efficacy and safety of tofacitinib have been shown in several randomized clinical trials. The study presented here aimed to assess the clinical tolerability and effectiveness of tofacitinib among RA patients in real life.

View Article and Find Full Text PDF

Habituation is a basic process of learning in which repeated exposure to a sensory stimulus leads to a decrease in the strength of neuronal activations and behavioral responses. In addition to increases in neuronal activity, sensory stimuli can also lead to decreases in neuronal activity. Until now, the effects of habituation on stimulus-induced neuronal deactivations have not been investigated.

View Article and Find Full Text PDF

It is well known that the threshold for somatosensory perception may adapt to different inputs. Recent studies suggest the presence of a modulating effect of somatosensory inputs on the spinal dorsal horn. However, the effects of somatosensory inputs on cerebral processing and, in particular, on the functional and effective connectivity of the somatosensory brain network, are poorly understood.

View Article and Find Full Text PDF

Habituation is a basic process of learning evident in a decrement in neuronal/behavioral responses to repeated sensory stimulation. It is generally accepted that habituation affects all sensory systems in the human brain, including the somatosensory network. However, it is not clear where habituation originates within this hierarchically organized network.

View Article and Find Full Text PDF

Understanding possible interactions between blood oxygenation level-dependent (BOLD) responses is critical for model-based analyses and the interpretation of experiments that deal with stimuli presented close together in time. Such interactions are well documented in the case of successive positive BOLD responses. However, the influence that a stimulus-induced, negative BOLD response exerts on a subsequent positive BOLD response has yet to be investigated and is the focus of the current study.

View Article and Find Full Text PDF

Somatosensory signals modulate activity throughout a widespread network in both of the brain hemispheres: the contralateral as well as the ipsilateral side of the brain relative to the stimulated limb. To analyze the ipsilateral somatosensory brain areas that are engaged during limb stimulation, we performed functional magnetic resonance imaging (fMRI) in 12 healthy subjects during electrical median nerve stimulation using both a block- and an event-related fMRI design. Data were analyzed through the use of model-dependent (SPM) and model-independent (ICA) approaches.

View Article and Find Full Text PDF

The primary somatosensory cortex (SI) has been shown to encode the intensity of a stimulus applied to the contralateral side of the body. Recent studies have demonstrated that ipsilateral SI is also involved in the processing of somatosensory information. In this study, we investigated the dependence of the negative BOLD response in ipsilateral SI on the intensity of somatosensory stimulation.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessiontdclc3rtl70poesahiohb3bttn1s4404): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once