Publications by authors named "Caroline H Lew"

Disturbances of the sleep/wake cycle in Alzheimer's disease (AD) are common, frequently precede cognitive decline, and tend to worsen with disease progression. Sleep is critical to the maintenance of homeostatic and circadian function, and chronic sleep disturbances have significant cognitive and physical health consequences that likely exacerbate disease severity. Sleep-wake cycles are regulated by neuromodulatory centers located in the brainstem, the hypothalamus, and the basal forebrain, many of which are vulnerable to the accumulation of abnormal protein deposits associated with neurodegenerative conditions.

View Article and Find Full Text PDF

Williams syndrome (WS) is a rare neurodevelopmental disorder caused by the hemideletion of approximately 25-28 genes at 7q11.23. Its unusual social and cognitive phenotype is most strikingly characterized by the disinhibition of social behavior, in addition to reduced global IQ, with a relative sparing of language ability.

View Article and Find Full Text PDF

Objectives: The serotonergic system is involved in the regulation of socio-emotional behavior and heavily innervates the amygdala, a key structure of social brain circuitry. We quantified serotonergic axon density of the four major nuclei of the amygdala in humans, and examined our results in light of previously published data sets in chimpanzees and bonobos.

Materials And Methods: Formalin-fixed postmortem tissue sections of the amygdala from six humans were stained for serotonin transporter (SERT) utilizing immunohistochemistry.

View Article and Find Full Text PDF

Williams Syndrome (WS) is a neurodevelopmental disorder caused by a deletion of 25⁻28 genes on chromosome 7 and characterized by a specific behavioral phenotype, which includes hypersociability and anxiety. Here, we examined the density of neurons and glia in fourteen human brains in Brodmann area 25 (BA 25), in the ventromedial prefrontal cortex (vmPFC), using a postmortem sample of five adult and two infant WS brains and seven age-, sex- and hemisphere-matched typically developing control (TD) brains. We found decreased neuron density, which reached statistical significance in the supragranular layers, and increased glia density and glia to neuron ratio, which reached statistical significance in both supra- and infragranular layers.

View Article and Find Full Text PDF

Perturbations to the amygdala have been observed in neurological disorders characterized by abnormalities in social behavior, such as autism and schizophrenia. Here, we quantitatively examined the amygdala in the postmortem human brains of male and female individuals diagnosed with Williams Syndrome (WS), a neurodevelopmental disorder caused by a well-defined deletion of ~ 26 genes, and accompanied by a consistent behavioral profile that includes profound hypersociability. Using unbiased stereological sampling, we estimated nucleus volume, number of neurons, neuron density, and neuron soma area in four major amygdaloid nuclei- the lateral nucleus, basal nucleus, accessory basal nucleus, and central nucleus- in a sample of five adult and two infant WS brains and seven age-, sex- and hemisphere-matched typically developing control (TD) brains.

View Article and Find Full Text PDF

Williams syndrome (WS) is a rare neurodevelopmental disorder with a well-described, known genetic etiology. In contrast to Autism Spectrum Disorders (ASD), WS has a unique phenotype characterized by global reductions in IQ and visuospatial ability, with relatively preserved language function, enhanced reactivity to social stimuli and music, and an unusual eagerness to interact socially with strangers. A duplication of the deleted region in WS has been implicated in a subset of ASD cases, defining a spectrum of genetic and behavioral variation at this locus defined by these opposite extremes in social behavior.

View Article and Find Full Text PDF

Williams syndrome (WS) is a unique neurodevelopmental disorder with a specific behavioral and cognitive profile, which includes hyperaffiliative behavior, poor social judgment, and lack of social inhibition. Here we examined the morphology of basal dendrites on pyramidal neurons in the cortex of two rare adult subjects with WS. Specifically, we examined two areas in the prefrontal cortex (PFC)-the frontal pole (Brodmann area 10) and the orbitofrontal cortex (Brodmann area 11)-and three areas in the motor, sensory, and visual cortex (BA 4, BA 3-1-2, BA 18).

View Article and Find Full Text PDF

Williams Syndrome (WS) is a rare neurodevelopmental disorder associated with a hemideletion in chromosome 7, which manifests a distinct behavioral phenotype characterized by a hyperaffiliative social drive, in striking contrast to the social avoidance behaviors that are common in Autism Spectrum Disorder (ASD). MRI studies have observed structural and functional abnormalities in WS cortex, including the prefrontal cortex (PFC), a region implicated in social cognition. This study utilizes the Bellugi Williams Syndrome Brain Collection, a unique resource that comprises the largest WS postmortem brain collection in existence, and is the first to quantitatively examine WS PFC cytoarchitecture.

View Article and Find Full Text PDF