For the development of new therapies, proof-of-concept studies in large animal models that share clinical features with their human counterparts represent a pivotal step. For inherited retinal dystrophies primarily involving photoreceptor cells, the efficacy of gene therapy has been demonstrated in canine models of stationary cone dystrophies and progressive rod-cone dystrophies but not in large models of progressive cone-rod dystrophies, another important cause of blindness. To address the last issue, we evaluated gene therapy in the retinitis pigmentosa GTPase regulator interacting protein 1 (RPGRIP1)-deficient dog, a model exhibiting a severe cone-rod dystrophy similar to that seen in humans.
View Article and Find Full Text PDFDefects in the β subunit of rod cGMP phosphodiesterase 6 (PDE6β) are associated with autosomal recessive retinitis pigmentosa (RP), a childhood blinding disease with early retinal degeneration and vision loss. To date, there is no treatment for this pathology. The aim of this preclinical study was to test recombinant adeno-associated virus (AAV)-mediated gene addition therapy in the rod-cone dysplasia type 1 (rcd1) dog, a large animal model of naturally occurring PDE6β deficiency that strongly resembles the human pathology.
View Article and Find Full Text PDFIn previous studies, we demonstrated that recombinant adeno-associated virus (rAAV)-mediated gene transfer of the doxycycline (Dox)-regulatable system allows for the regulation of erythropoietin (EPO) expression in the retina of nonhuman primates after intravenous or oral administration of Dox. In addition, it was shown that administrating different amounts of Dox resulted in a dose-response dynamic of transgene expression. Adeno-associated viral gene therapy has raised hope for the treatment of patients with Leber congenital amaurosis, caused by mutations in the retinal pigment epithelium (RPE)-specific gene RPE65.
View Article and Find Full Text PDFBackground: There is a significant need for reliable molecular biomarkers to aid in Alzheimer's disease (AD) clinical diagnosis.
Methods: We performed a genome-wide investigation of the human transcriptome, taking into account the discriminatory power of splice variations from the blood of 80 AD patients and 70 nondemented control (NDC) individuals.
Results: We characterized a blood RNA signature composed of 170 oligonucleotide probe sets associated with 133 genes that can correctly distinguish AD patients from NDC with a sensitivity of 100% and specificity of 96%.
Over the past decade, alternative RNA splicing has raised a great interest appearing to be of high importance in the generation of expression diversity. This regulatory process plays a critical role in the normal development and its impact on the initiation and development of human disorders as well as on the pharmacological properties of drugs is increasingly being recognized. Only few studies describe specific alternative splicing expression profiling.
View Article and Find Full Text PDF