Publications by authors named "Caroline Glidden"

Background: Schistosomiasis, a chronic parasitic disease, remains a public health issue in tropical and subtropical regions, especially in low and moderate-income countries lacking assured access to safe water and proper sanitation. A national prevalence survey carried out by the Brazilian Ministry of Health from 2011 to 2015 found a decrease in human infection rates to 1%, with 19 out of 26 states still classified as endemic areas. There is a risk of schistosomiasis reemerging as a public health concern in low-endemic regions.

View Article and Find Full Text PDF

Species distribution models (SDMs) are increasingly popular tools for profiling disease risk in ecology, particularly for infectious diseases of public health importance that include an obligate non-human host in their transmission cycle. SDMs can create high-resolution maps of host distribution across geographical scales, reflecting baseline risk of disease. However, as SDM computational methods have rapidly expanded, there are many outstanding methodological questions.

View Article and Find Full Text PDF

Metastasis occurs frequently after resection of pancreatic cancer (PaC). In this study, we hypothesized that multi-parametric analysis of pre-metastatic liver biopsies would classify patients according to their metastatic risk, timing and organ site. Liver biopsies obtained during pancreatectomy from 49 patients with localized PaC and 19 control patients with non-cancerous pancreatic lesions were analyzed, combining metabolomic, tissue and single-cell transcriptomics and multiplex imaging approaches.

View Article and Find Full Text PDF

Schistosomiasis is a neglected tropical disease caused by Schistosoma parasites. Schistosoma are obligate parasites of freshwater Biomphalaria and Bulinus snails, thus controlling snail populations is critical to reducing transmission risk. As snails are sensitive to environmental conditions, we expect their distribution is significantly impacted by global change.

View Article and Find Full Text PDF

Schistosomiasis is a neglected tropical disease caused by parasites. are obligate parasites of freshwater snails, so controlling snail populations is critical to reducing transmission risk. As snails are sensitive to environmental conditions, we expect their distribution is significantly impacted by global change.

View Article and Find Full Text PDF

Many infectious pathogens are shared through social interactions, and examining host connectivity has offered valuable insights for understanding patterns of pathogen transmission across wildlife species. African buffalo are social ungulates and important reservoirs of directly-transmitted pathogens that impact numerous wildlife and livestock species. Here, we analyzed African buffalo social networks to quantify variation in close contacts, examined drivers of contact heterogeneity, and investigated how the observed contact patterns affect pathogen invasion likelihoods for a wild social ungulate.

View Article and Find Full Text PDF

Predicting how increasing intensity of human-environment interactions affects pathogen transmission is essential to anticipate changing disease risks and identify appropriate mitigation strategies. Vector-borne diseases (VBDs) are highly responsive to environmental changes, but such responses are notoriously difficult to isolate because pathogen transmission depends on a suite of ecological and social responses in vectors and hosts that may differ across species. Here we use the emerging tools of cumulative pressure mapping and machine learning to better understand how the occurrence of six medically important VBDs, differing in ecology from sylvatic to urban, respond to multidimensional effects of human pressure.

View Article and Find Full Text PDF

The spatio-temporal distribution of leishmaniasis, a parasitic vector-borne zoonotic disease, is significantly impacted by land-use change and climate warming in the Americas. However, predicting and containing outbreaks is challenging as the zoonotic Leishmania system is highly complex: leishmaniasis (visceral, cutaneous and muco-cutaneous) in humans is caused by up to 14 different Leishmania species, and the parasite is transmitted by dozens of sandfly species and is known to infect almost twice as many wildlife species. Despite the already broad known host range, new hosts are discovered almost annually and Leishmania transmission to humans occurs in absence of a known host.

View Article and Find Full Text PDF

Individual animals in natural populations tend to host diverse parasite species concurrently over their lifetimes. In free-living ecological communities, organismal life histories shape interactions with their environment, which ultimately forms the basis of ecological succession. However, the structure and dynamics of mammalian parasite communities have not been contextualized in terms of primary ecological succession, in part because few datasets track occupancy and abundance of multiple parasites in wild hosts starting at birth.

View Article and Find Full Text PDF

The incidence of vector-borne diseases is rising as deforestation, climate change, and globalization bring humans in contact with arthropods that can transmit pathogens. In particular, incidence of American Cutaneous Leishmaniasis (ACL), a disease caused by parasites transmitted by sandflies, is increasing as previously intact habitats are cleared for agriculture and urban areas, potentially bringing people into contact with vectors and reservoir hosts. Previous evidence has identified dozens of sandfly species that have been infected with and/or transmit Leishmania parasites.

View Article and Find Full Text PDF

The incidence of emerging infectious diseases (EIDs) has increased in wildlife populations in recent years and is expected to continue to increase with global environmental change. Marine diseases are relatively understudied compared with terrestrial diseases but warrant parallel attention as they can disrupt ecosystems, cause economic loss, and threaten human livelihoods. Although there are many existing tools to combat the direct and indirect consequences of EIDs, these management strategies are often insufficient or ineffective in marine habitats compared with their terrestrial counterparts, often due to fundamental differences between marine and terrestrial systems.

View Article and Find Full Text PDF

Measuring inflammatory markers is critical to evaluating both recent infection status and overall human and animal health; however, there are relatively few techniques that do not require specialized equipment or personnel for detecting inflammation among wildlife. Such techniques are useful in that they help determine individual and population-level inflammatory status without the infrastructure and reagents that many more-specific assays require. One such technique, known as the erythrocyte sedimentation rate (ESR), is a measure of how quickly erythrocytes (red blood cells) settle in serum, with a faster rate indicating a general, underlying inflammatory process is occurring.

View Article and Find Full Text PDF

Human-mediated changes to natural ecosystems have consequences for both ecosystem and human health. Historically, efforts to preserve or restore 'biodiversity' can seem to be in opposition to human interests. However, the integration of biodiversity conservation and public health has gained significant traction in recent years, and new efforts to identify solutions that benefit both environmental and human health are ongoing.

View Article and Find Full Text PDF

The amphibian chytrid fungus () is a skin pathogen that can cause the emerging infectious disease chytridiomycosis in susceptible species. It has been considered one of the most severe threats to amphibian biodiversity. We aimed to provide an updated compilation of global occurrences by host taxon and geography, and with the larger global dataset we reanalyzed associations with environmental metrics at the world and regional scales.

View Article and Find Full Text PDF

The dynamics of directly transmitted pathogens in natural populations are likely to result from the combined effects of host traits, pathogen biology, and interactions among pathogens within a host. Discovering how these factors work in concert to shape variation in pathogen dynamics in natural host-multi-pathogen systems is fundamental to understanding population health. Here, we describe temporal variation in incidence and then elucidate the effect of hosts trait, season and pathogen co-occurrence on host infection risk using one of the most comprehensive studies of co-infection in a wild population: a suite of seven directly transmitted viral and bacterial respiratory infections from a 4-year study of 200 free-ranging African buffalo Syncerus caffer.

View Article and Find Full Text PDF

Lay Summary: Competition often occurs among diverse parasites within a single host, but control efforts could change its strength. We examined how the interplay between competition and control could shape the evolution of parasite traits like drug resistance and disease severity.

View Article and Find Full Text PDF

Newborn mammals have an immature immune system that cannot sufficiently protect them against infectious diseases. However, variation in the effectiveness of maternal immunity against different parasites may couple with temporal trends in parasite exposure to influence disparities in the timing of infection risk. Determining the relationship between age and infection risk is critical in identifying the portion of a host population that contributes to parasite dynamics, as well as the parasites that regulate host recruitment.

View Article and Find Full Text PDF

Increasing access to next-generation sequencing (NGS) technologies is revolutionizing the life sciences. In disease ecology, NGS-based methods have the potential to provide higher-resolution data on communities of parasites found in individual hosts as well as host populations.Here, we demonstrate how a novel analytical method, utilizing high-throughput sequencing of PCR amplicons, can be used to explore variation in blood-borne parasite (-Apicomplexa: Piroplasmida) communities of African buffalo at higher resolutions than has been obtained with conventional molecular tools.

View Article and Find Full Text PDF

Detecting exposure to new or emerging pathogens is a critical challenge to protecting human, domestic animal, and wildlife health. Yet, current techniques to detect infections typically target known pathogens of humans or economically important animals. In the face of the current surge in infectious disease emergence, non-specific disease surveillance tools are urgently needed.

View Article and Find Full Text PDF