Publications by authors named "Caroline Garliss"

Current coronavirus disease 2019 (COVID-19) mRNA vaccines induce robust SARS-CoV-2-specific humoral and cellular responses in people with HIV (PWH). However, the rate of decay of effector immune responses has not been studied in these individuals. Here, we report a significant waning of antibody responses but persistent T-cell responses 6 months post vaccination in virally suppressed PWH with high CD4+ T-cell counts.

View Article and Find Full Text PDF

Background: COVID-19 mRNA vaccines elicit strong T and B cell responses to the SARS-CoV-2 spike glycoprotein in both SARS-CoV-2 naïve and experienced patients. However, it is unknown whether the post-vaccine CD4+ T cell responses seen in patients with a history of COVID-19 are due to restimulation of T cell clonotypes that were first activated during natural infection or if they are the result of new clones activated by the vaccine.

Methods: To address this question, we analyzed the SARS-CoV-2 spike glycoprotein-specific CD4+ T cell receptor repertoire before and after vaccination in 10 COVID-19 convalescent patients and 4 SARS-CoV-2 naïve healthy donor vaccine recipients.

View Article and Find Full Text PDF

We compared antibody and T-cell responses against the severe acute respiratory syndrome coronavirus 2 vaccine strain spike protein to responses against the Omicron variant in 15 messenger RNA vaccine recipients. While these individuals had significantly lower levels of antibodies that inhibited Omicron spike protein binding to ACE2, there was no difference in T-cell responses.

View Article and Find Full Text PDF

BackgroundBreakthrough SARS-CoV-2 infections in vaccinated individuals have been previously associated with suboptimal humoral immunity. However, less is known about breakthrough infections with the Omicron variant.MethodsWe analyzed SARS-CoV-2-specific antibody and cellular responses in healthy vaccine recipients who experienced breakthrough infections a median of 50 days after receiving a booster mRNA vaccine with an ACE2 binding inhibition assay and an ELISpot assay, respectively.

View Article and Find Full Text PDF

Benchmarks for protective immunity from infection or severe disease after SARS-CoV-2 vaccination are still being defined. Here, we characterized virus neutralizing and ELISA antibody levels, cellular immune responses, and viral variants in 4 separate groups: healthy controls (HCs) weeks (early) or months (late) following vaccination in comparison with symptomatic patients with SARS-CoV-2 after partial or full mRNA vaccination. During the period of the study, most symptomatic breakthrough infections were caused by the SARS-CoV-2 Alpha variant.

View Article and Find Full Text PDF

Recent studies have shown that vaccinated individuals harbor T cells that can cross-recognize SARS-CoV-2 and endemic human common cold coronaviruses. However, it is still unknown whether CD4+ T cells from vaccinated individuals recognize peptides from bat coronaviruses that may have the potential of causing future pandemics. In this study, we identified a SARS-CoV-2 spike protein epitope (S815-827) that is conserved in coronaviruses from different genera and subgenera, including SARS-CoV, MERS-CoV, multiple bat coronaviruses, and a feline coronavirus.

View Article and Find Full Text PDF

Emergency departments (EDs) can serve as surveillance sites for infectious diseases. The objective of this study was to determine the burden of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection and to monitor the prevalence of vaccination against coronavirus disease 2019 (COVID-19) among patients attending an urban ED in Baltimore City. Using 1,914 samples of known exposure status, we developed an algorithm to differentiate previously infected, vaccinated, and unexposed individuals using a combination of antibody assays.

View Article and Find Full Text PDF

Little is known about the decay kinetics of coronavirus disease 2019 vaccine-elicited severe acute respiratory syndrome coronavirus 2-specific T cells. In this study we show a modest decline in the frequency of these T cells at 6 months and demonstrate robust expansion in response to antigen and recognition of spike peptides from the Delta variant.

View Article and Find Full Text PDF

Background: Emergency Departments (EDs) can serve as surveillance sites for infectious diseases. Our purpose was to determine the burden of SARS-CoV-2 infection and prevalence of vaccination against COVID-19 among patients attending an urban ED in Baltimore City.

Methods: Using 1914 samples of known exposure status, we developed an algorithm to differentiate previously infected, vaccinated, and unexposed individuals using a combination of antibody assays.

View Article and Find Full Text PDF

HIV-specific CD8 T cells and broadly neutralizing antibodies (bNAbs) both contribute to the control of viremia, but in most cases, neither can completely suppress viral replication. To date, therapeutic vaccines have not been successful in eliciting HIV-specific CD8 T cell or bNAb responses that are capable of preventing long-term viral rebound upon ART cessation. These challenges suggest that a combinatorial approach that harnesses both bNAbs and CD8 T cell responses may be necessary for long term control of viral replication.

View Article and Find Full Text PDF

Previous studies have shown that certain vaccines induce suboptimal responses in people living with human immunodeficiency virus (HIV, PLWH). However, responses to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccines have not been fully characterized in these patients. Here we show that the BNT162b2 vaccine induces robust immune responses comparable to responses in healthy donors.

View Article and Find Full Text PDF

BACKGROUNDRecent studies have reported T cell immunity to the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in unexposed donors, possibly due to crossrecognition by T cells specific for common cold coronaviruses (CCCs). True T cell crossreactivity, defined as the recognition by a single TCR of more than one distinct peptide-MHC ligand, has never been shown in the context of SARS-CoV-2.METHODSWe used the viral functional expansion of specific T cells (ViraFEST) platform to identify T cell responses crossreactive for the spike (S) glycoproteins of SARS-CoV-2 and CCCs at the T cell receptor (TCR) clonotype level in convalescent COVID-19 patients (CCPs) and SARS-CoV-2-unexposed donors.

View Article and Find Full Text PDF

Recent studies have shown T cell cross-recognition of SARS-CoV-2 and common cold coronavirus spike proteins. However, the effect of SARS-CoV-2 vaccines on T cell responses to common cold coronaviruses (CCCs) remains unknown. In this study, we analyzed CD4+ T cell responses to spike peptides from SARS-CoV-2 and 3 CCCs (HCoV-229E, HCoV-NL63, and HCoV-OC43) before and after study participants received Pfizer-BioNTech (BNT162b2) or Moderna (mRNA-1273) mRNA-based COVID-19 vaccines.

View Article and Find Full Text PDF

BACKGROUNDT cell responses to the common cold coronaviruses have not been well characterized. Preexisting T cell immunity to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has been reported, and a recent study suggested that this immunity was due to cross-recognition of the novel coronavirus by T cells specific for the common cold coronaviruses.METHODSWe used the enzyme-linked immunospot (ELISPOT) assay to characterize the T cell responses against peptide pools derived from the spike protein of 3 common cold coronaviruses (HCoV-229E, HCoV-NL63, and HCoV-OC43) and SARS-CoV-2 in 21 healthy donors (HDs) who were seronegative for SARS-CoV-2 and had no known exposure to the virus.

View Article and Find Full Text PDF

HIV-1 positive elite controllers or suppressors control viral replication without antiretroviral therapy, likely via CTL-mediated elimination of infected cells, and therefore represent a model of an HIV-1 functional cure. Efforts to cure HIV-1 accordingly rely on the existence or generation of antigen-specific cytotoxic T lymphocytes (CTL) to eradicate infected cells upon reversal of latency. Detecting and quantifying these HIV-1-specific CTL responses will be crucial for developing vaccine and T cell-based immunotherapies.

View Article and Find Full Text PDF

Resting CD4+ T cells are the best characterized component of the latent reservoir. Activation of these CD4+ T cells is needed to optimize transcription and viral replication, and this strategy has been used to measure the inducible reservoir. There are several methods that can be used to activate CD4+ T cells, and in this study, we compared 3 different strategies: the combination of the lectin phytohaemagglutinin (PHA) and irradiated allogeneic feeders, a combination of PHA and a superagonistic anti-CD28 antibody, and the combination of the protein kinase C agonist phorbol 12-myristate 13-acetate and the calcium ionophore ionomycin.

View Article and Find Full Text PDF

: Elite controllers or suppressors control viral replication without antiretroviral therapy. We used the intact proviral DNA assay to approximate the size of the inducible latent reservoir in elite suppressors and found that, while the median frequency of both total and intact proviral DNA was markedly lower than the frequencies seen in chronic progressors on antiretroviral therapy there was no significant difference in the ratio of intact to total proviral DNA between elite suppressors and chronic progressors.

View Article and Find Full Text PDF

Clonal expansion of T cells harboring replication-competent virus has recently been demonstrated in patients on suppressive antiretroviral therapy (ART) regimens. However, there has not been direct evidence of this phenomenon in settings of natural control, including in posttreatment controllers who maintain control of viral replication after treatment when ART is discontinued. We present a case of an individual who has had undetectable viral loads for more than 15 years following the cessation of ART.

View Article and Find Full Text PDF

Heterologous immunity is an important aspect of the adaptive immune response. We hypothesized that this process could modulate the HIV-1-specific CD8+ T cell response, which has been shown to play an important role in HIV-1 immunity and control. We found that stimulation of peripheral blood mononuclear cells (PBMCs) from HIV-1-positive subjects with microbial peptides that were cross-reactive with immunodominant HIV-1 epitopes resulted in dramatic expansion of HIV-1-specific CD8+ T cells.

View Article and Find Full Text PDF

Aims: Latently infected resting CD4 T cells represent a major barrier to HIV-1 eradication efforts. The standard assays used for measuring this reservoir induce activation of resting CD4 T cells with either phytohaemagglutinin (PHA) with irradiated feeder cells, or with anti-CD3 antibodies. We designed a study to compare the sensitivity of a new assay (based on the stimulation of CD4 T cells with anti-CD3 and anti-CD28 coated microbeads) with that of the traditional PHA- and feeder-based viral outgrowth assay.

View Article and Find Full Text PDF