In utero exposure to certain chemicals can impair embryo development, causing embryonic death, growth retardation, or severe birth defects. Establishment of effective in vitro tests is crucial for identifying developmental toxicants and for reducing the financial and ethical burden of animal-based tests. Previously, we created an in vitro morphogenesis model using pluripotent P19C5 mouse embryonal carcinoma stem cells that mimics the process of gastrulation and axial body elongation of embryos.
View Article and Find Full Text PDFVarious compounds, including therapeutic drugs, can adversely impact the survival and development of embryos in the uterus. Identification of such development-interfering agents is a challenging task, although multi-angle approaches--including the use of in vitro toxicology studies involving embryonic stem cells--should alleviate some of the current difficulties. In the present study, we utilized the in vitro elongation of embryoid bodies (EBs) derived from mouse embryonal carcinoma stem cell line P19C5 as a model of early embryological events, specifically that of gastrulation and axial patterning.
View Article and Find Full Text PDF