Accumulation of deoxyribonucleic acid (DNA) damage diminishes cellular health, increases risk of developmental and degenerative diseases, and accelerates aging. Optimizing nutrient intake can minimize accrual of DNA damage. The objectives of this review are to: 1) assemble and systematically analyze high-level evidence for the effect of supplementation with micronutrients and phytochemicals on baseline levels of DNA damage in humans, and 2) use this knowledge to identify which of these essential micronutrients or nonessential phytochemicals promote DNA integrity in vivo in humans.
View Article and Find Full Text PDFIntroduction: Aging is the primary risk factor for major human pathologies, including cancer, diabetes, cardiovascular diseases, and neurodegenerative diseases such as Alzheimer's Disease (AD). AD is a progressive degenerative disorder of the brain and is the most common form of dementia.
Methods: To-date no simple, inexpensive and minimally invasive procedure is available to confirm with certainty the early diagnosis of AD prior to the manifestations of symptoms characteristic of the disease.
The essential role of dietary micronutrients for genome stability is well documented, yet the effect of folate deficiency or excess on telomeres is not known. Accordingly, human WIL2-NS cells were maintained in medium containing 30, 300, or 3,000 nmol/L folic acid (FA) for 42 days to test the hypothesis that chronic folate deficiency would cause telomere shortening and dysfunction. After 14 days, telomere length (TL) in FA-deficient (30 nmol/L) cultures was 26% longer than that of 3,000 nmol/L FA cultures; however, this was followed by rapid telomere attrition over the subsequent 28 days (P trend, P < 0.
View Article and Find Full Text PDFChromosomal instability (CIN) is an important hallmark to oncogenesis and can be diagnosed morphologically by the presence of nuclear anomalies such as micronuclei (MN), nucleoplasmic bridges (NPBs), and nuclear buds (NBuds). We have identified additional nuclear anomalies formed under folate-deficient conditions, defined as "fused" nuclei (FUS), "circular" nuclei (CIR), and "horse-shoe" nuclei (HS) and investigated their suitability for inclusion as additional CIN biomarkers in the lymphocyte cytokinesis-block micronucleus cytome (CBMN-Cyt) assay. Although the morphological appearance of FUS, CIR, and HS suggested an origin from multiple NPB in the fusion region between the two nuclei, the very low frequency of dicentric chromosomes in metaphase spreads from these cultures did not support this model.
View Article and Find Full Text PDFDNA damage is a fundamental cause of developmental and degenerative diseases. The in vitro cytokinesis-block micronucleus cytome (CBMN-Cyt) assay is an established comprehensive method for assessing cytostasis and chromosome stability in cells. Originally developed to study the acute effects of single environmental genotoxicants, creative applications and adaptations to the basic protocol have allowed its use in evaluating the impacts of dietary micronutrients and micronutrient combinations (nutriomes) on DNA damage.
View Article and Find Full Text PDFDeficiencies in folate (FOL) and vitamin B12 (B12) result in increased chromosomal aberrations, a validated biomarker of cancer risk. Telomeres, the regions of DNA that cap the ends of each chromosome, are critical for maintaining chromosomal stability but the impact of micronutrients on telomere structure and function remains unclear. We hypothesized that telomere length maintenance might be compromised if the status of FOL and B12 was inadequate and plasma homocysteine (HCY) was increased.
View Article and Find Full Text PDF