This article summarizes the evolution of the screening deck at the Novartis Institutes for BioMedical Research (NIBR). Historically, the screening deck was an assembly of all available compounds. In 2015, we designed a first deck to facilitate access to diverse subsets with optimized properties.
View Article and Find Full Text PDFPhenotypic chemogenomics studies require screening strategies that account for the complex nature of the experimental system. Unknown mechanism of action and high frequency of false positives and false negatives necessitate iterative experiments based on hypotheses formed on the basis of results from the previous step. Process-driven High Throughput Screening (HTS), aiming to "industrialize" lead finding and developed to maximize throughput, is rarely affording sufficient flexibility to design hypothesis-based experiments.
View Article and Find Full Text PDFChemogenomics knowledge-based drug discovery approaches aim to extract the knowledge gained from one target and to apply it for the discovery of ligands and hopefully drugs of a new target which is related to the parent target by homology or conserved molecular recognition. Herein, we demonstrate the potential of knowledge-based virtual screening by applying it to the MDM4-p53 protein-protein interaction where the MDM2-p53 protein-protein interaction constitutes the parent reference system; both systems are potentially relevant to cancer therapy. We show that a combination of virtual screening methods, including homology based similarity searching, QSAR (Quantitative Structure-Activity Relationship) methods, HTD (High Throughput Docking), and UNITY pharmacophore searching provide a successful approach to the discovery of inhibitors.
View Article and Find Full Text PDFThe impact of storage conditions on compound stability and compound solubility has been debated intensely over the past 5 years. At Novartis, the authors decided to opt for a storage concept that can be considered controversial because they are using a DMSO/water (90/10) mixture as standard solvent. To assess the effect of water in DMSO stocks on compound stability, the authors monitored the purity of a subset of 1404 compounds from ongoing medicinal chemistry projects over several months.
View Article and Find Full Text PDFIn high-throughput screening (HTS), compounds can be tested in self-deconvoluting matrices (SDMs) of 10 compounds per well. The SDM setup is based upon a systematic mixing of compound samples such that each compound appears twice in the screening assay, in two independent mixtures. In order to test the quality of the SDM approach, we compared it with a standard single-compound screening approach.
View Article and Find Full Text PDFThe NIBR (Novartis Institutes for BioMedical Research) compound collection enrichment and enhancement project integrates corporate internal combinatorial compound synthesis and external compound acquisition activities in order to build up a comprehensive screening collection for a modern drug discovery organization. The main purpose of the screening collection is to supply the Novartis drug discovery pipeline with hit-to-lead compounds for today's and the future's portfolio of drug discovery programs, and to provide tool compounds for the chemogenomics investigation of novel biological pathways and circuits. As such, it integrates designed focused and diversity-based compound sets from the synthetic and natural paradigms able to cope with druggable and currently deemed undruggable targets and molecular interaction modes.
View Article and Find Full Text PDF