Publications by authors named "Caroline E O'Riordan"

Echocardiography is a non-invasive imaging technique providing real-time information to assess the structure and function of the heart. Due to advancements in technology, ultra-high-frequency transducers have enabled the translation of ultrasound from humans to small animals due to resolutions down to 30 µm. Most studies are performed using mice and rats, with ages ranging from embryonic, to neonatal, and adult.

View Article and Find Full Text PDF

Using a global formyl peptide receptor (Fpr) 2 knockout mouse colony, we have reported the modulatory properties of this pro-resolving receptor in polymicrobial sepsis. Herein, we have used a humanized FPR2 (hFPR2) mouse colony, bearing an intact or a selective receptor deficiency in myeloid cells to dwell on the cellular mechanisms. hFPR2 mice and myeloid cell-specific hFPR2 KO (KO) mice were subjected to cecal ligation and puncture (CLP)-induced polymicrobial sepsis.

View Article and Find Full Text PDF

Sepsis is caused by systemic infection and is a major health concern as it is the primary cause of death from infection. It is the leading cause of mortality worldwide and there are no specific effective treatments for sepsis. Gene deletion of the neutral solute channel Aquaporin 9 (AQP9) normalizes oxidative stress and improves survival in a bacterial endotoxin induced mouse model of sepsis.

View Article and Find Full Text PDF

Mounting evidence has linked the metabolic disease to neurovascular disorders and cognitive decline. Using a murine model of a high-fat high-sugar diet mimicking obesity-induced type 2 diabetes mellitus (T2DM) in humans, we show that pro-inflammatory mediators and altered immune responses damage the blood-brain barrier (BBB) structure, triggering a proinflammatory metabolic phenotype. We find that disruption to tight junctions and basal lamina due to loss of control in the production of matrix metalloproteinases (MMPs) and their inhibitors (TIMPs) causes BBB impairment.

View Article and Find Full Text PDF

We previously reported the Bruton's tyrosine kinase (BTK) inhibitors ibrutinib and acalabrutinib improve outcomes in a mouse model of polymicrobial sepsis. Now we show that genetic deficiency of the BTK gene in mice confers protection against cardiac, renal, and liver injury in polymicrobial sepsis and reduces hyperimmune stimulation ("cytokine storm") induced by an overwhelming bacterial infection. Protection is due in part to enhanced bacterial phagocytosis , changes in lipid metabolism and decreased activation of NF-κB and the NLRP3 inflammasome.

View Article and Find Full Text PDF

Background And Purpose: There are no medications currently available to treat metabolic inflammation. Bruton's tyrosine kinase (BTK) is highly expressed in monocytes and macrophages and regulates NF-κB and NLRP3 inflammasome activity; both propagate metabolic inflammation in diet-induced obesity.

Experimental Approach: Using an in vivo model of chronic inflammation, high-fat diet (HFD) feeding, in male C57BL/6J mice and in vitro assays in primary murine and human macrophages, we investigated if ibrutinib, an FDA approved BTK inhibitor, may represent a novel anti-inflammatory medication to treat metabolic inflammation.

View Article and Find Full Text PDF

Septic cardiomyopathy is a life-threatening organ dysfunction caused by sepsis. Ribonuclease 1 (RNase 1) belongs to a group of host-defense peptides that specifically cleave extracellular RNA (eRNA). The activity of RNase 1 is inhibited by ribonuclease-inhibitor 1 (RNH1).

View Article and Find Full Text PDF

Sepsis is one of the most prevalent diseases in the world. The development of cardiac dysfunction in sepsis results in an increase of mortality. It is known that Bruton's tyrosine kinase (BTK) plays a role in toll-like receptor signaling and NLRP3 inflammasome activation, two key components in the pathophysiology of sepsis and sepsis-associated cardiac dysfunction.

View Article and Find Full Text PDF

Background: During kidney fibrosis, a hallmark and promoter of CKD (regardless of the underlying renal disorder leading to CKD), the extracellular-regulated kinase 1/2 (ERK1/2) pathway, is activated and has been implicated in the detrimental differentiation and expansion of kidney fibroblasts. An ERK1/2 pathway inhibitor, trametinib, is currently used in the treatment of melanoma, but its efficacy in the setting of CKD and renal fibrosis has not been explored.

Methods: We investigated whether trametinib has antifibrotic effects in two mouse models of renal fibrosis-mice subjected to unilateral ureteral obstruction (UUO) or fed an adenine-rich diet-as well as in cultured primary human fibroblasts.

View Article and Find Full Text PDF