Publications by authors named "Caroline Denesvre"

Marek's disease virus (MDV) vaccines were the first vaccines that protected against cancer. The avirulent turkey herpesvirus (HVT) was widely employed and protected billions of chickens from a deadly MDV infection. It is also among the most common vaccine vectors providing protection against a plethora of pathogens.

View Article and Find Full Text PDF

This article reviews the avian viruses that infect the skin of domestic farm birds of primary economic importance: chicken, duck, turkey, and goose. Many avian viruses (e.g.

View Article and Find Full Text PDF

pUL51 is a minor tegument protein important for viral assembly and cell-to-cell spread (CCS) but dispensable for replication in cell culture of all Herpesviruses for which its role has been investigated. Here, we show that pUL51 is essential for the growth of Marek's disease virus, an oncogenic alphaherpesvirus of chickens that is strictly cell-associated in cell culture. MDV pUL51 localized to the Golgi apparatus of infected primary skin fibroblasts, as described for other Herpesviruses.

View Article and Find Full Text PDF

Protocols allowing the in vitro culture of human hair follicles in a serum free-medium up to 9 days were developed 30 years ago. By using similar protocols, we achieved the prolonged maintenance in vitro of juvenile feather follicles (FF) microdissected from young chickens. Histology showed a preservation of the FF up to 7 days as well as feather morphology compatible with growth and/or differentiation.

View Article and Find Full Text PDF

In vivo bioluminescence imaging facilitates the non-invasive visualization of biological processes in living animals. This system has been used to track virus infections mostly in mice and ferrets; however, until now this approach has not been applied to pathogens in avian species. To visualize the infection of an important avian pathogen, we generated Marek's disease virus (MDV) recombinants expressing firefly luciferase during lytic replication.

View Article and Find Full Text PDF

Circular RNAs (circRNAs) are a recently rediscovered class of functional noncoding RNAs that are involved in gene regulation and cancer development. Next-generation sequencing approaches identified circRNA fragments and sequences underlying circularization events in virus-induced cancers. In the present study, we performed viral circRNA expression analysis and full-length sequencing in infections with Marek's disease virus (MDV), which serves as a model for herpesvirus-induced tumorigenesis.

View Article and Find Full Text PDF

Latency is a hallmark of herpesviruses, allowing them to persist in their host without virion production. Acute exposure to hypoxia (below 3% O) was identified as a trigger of latent-to-lytic switch (reactivation) for human oncogenic gammaherpesviruses (Kaposi's sarcoma-associated virus [KSHV] and Epstein-Barr virus [EBV]). Therefore, we hypothesized that hypoxia could also induce reactivation of Marek's disease virus (MDV), which shares biological properties with EBV and KSHV (notably oncogenic properties), in lymphocytes.

View Article and Find Full Text PDF
Article Synopsis
  • Marek's disease virus (MDV) causes serious health issues like immunosuppression and lymphoma in chickens, primarily affecting their lymphoid organs, particularly B-cells in the bursa of Fabricius.
  • The study reveals that MDV infection enhances the survival of bursal B-cells while significantly down-regulating genes related to cytokines, cell cycle, and apoptosis, suggesting a change in cellular behavior.
  • Ultimately, MDV-infected B-cells exhibit characteristics resembling cellular senescence, resulting in longer cell lifespan, providing valuable insights into the virus's impact on these immune cells.
View Article and Find Full Text PDF

The skin is a passive and active barrier which protects the body from the environment. Its health is essential for the accomplishment of this role. Since several decades, the skin has aroused a strong interest in various fields (for e.

View Article and Find Full Text PDF

Herpesvirus of turkey (HVT) is commonly used as a vaccine to protect chickens against Marek's disease. Following vaccination, HVT infects feathers where it can be detected in all chicken lines examined. Unlike the parental Brown line (BL), Smyth line (SL) chickens develop vitiligo, due to autoimmune destruction of melanocytes in feathers.

View Article and Find Full Text PDF

Viral tropism and transmission of herpesviruses are best studied in their natural host for maximal biological relevance. In the case of alphaherpesviruses, few reports have focused on those aspects, primarily because of the few animal models available as natural hosts that are compatible with such studies. Here, using Marek's disease virus (MDV), a highly contagious and deadly alphaherpesvirus of chickens, we analyze the role of tegument proteins pUL47 and pUL48 in the whole life cycle of the virus.

View Article and Find Full Text PDF

Marek's disease (MD) is a major disease of chickens induced by Marek's disease virus (MDV) associated to lethal lymphomas. Current MD vaccines protect against lymphomas, but fail to prevent infection and shedding. The control of MDV shedding is crucial in order to eradicate this highly contagious virus.

View Article and Find Full Text PDF

VP22 is a major tegument protein of alphaherpesviruses encoded by the gene. Two properties of VP22 were discovered by studying Marek's disease virus (MDV), the Mardivirus prototype; it has a major role in virus cell-to-cell spread and in cell cycle modulation. This 249 AA-long protein contains three regions including a conserved central domain.

View Article and Find Full Text PDF

Marek's disease is a multi-faceted highly contagious disease affecting chickens caused by the Marek's disease alphaherpesvirus (MDV). MDV early infection induces a transient immunosuppression, which is associated with thymus and bursa of Fabricius atrophy. Little is known about the cellular processes involved in primary lymphoid organ atrophy.

View Article and Find Full Text PDF

Marek's disease virus (MDV) is a highly contagious alphaherpesvirus that infects chickens and causes a deadly neoplastic disease. We previously demonstrated that MDV infection arrests cells in S phase and that the tegument protein VP22 plays a major role in this process. In addition, expression of VP22 induces double-strand breaks (DSBs) in the cellular DNA, suggesting that DNA damage and the associated cellular response might be favorable for the MDV life cycle.

View Article and Find Full Text PDF

Marek's disease virus is the etiological agent of a major lymphoproliferative disorder in poultry and the prototype of the Mardivirus genus. Primary avian somatic cells are currently used for virus replication and vaccine production, but they are largely refractory to any genetic modification compatible with the preservation of intact viral susceptibility. We explored the concept of induction of viral replication permissiveness in an established pluripotent chicken embryonic stem cell-line (cES) in order to derive a new fully susceptible cell-line.

View Article and Find Full Text PDF

Background: Marek's disease is a virus disease with worldwide distribution that causes major losses to poultry production. Vaccines against Marek's disease virus, an oncogenic alphaherpesvirus, reduce tumour formation but have no effect on virus shedding. Successful horizontal virus transmission is linked to the active viral replication in feather follicle epithelial cells of infected chickens, from which infectious viral particles are shed into the environment.

View Article and Find Full Text PDF

T-lymphocytes are central targets of Marek's disease, a major chicken disease induced by the oncogenic alphaherpesvirus Marek's disease virus (MDV). T-lymphocyte infection is also associated with immunosuppression and virus latency. To decipher viral morphogenesis in T-lymphocytes, we used the recombinant vRB-1B 47EGFP marker virus to generate a new lymphoblastoid cell line, 3867K, that exhibited typical properties of other MDV-transformed chicken cell lines in term of cell markers, reactivation rate and infectivity.

View Article and Find Full Text PDF

Recent studies show that human skin at homeostasis is a complex ecosystem whose virome include circular DNA viruses, especially papillomaviruses and polyomaviruses. To determine the chicken skin virome in comparison with human skin virome, a chicken swabs pool sample from fifteen indoor healthy chickens of five genetic backgrounds was examined for the presence of DNA viruses by high-throughput sequencing (HTS). The results indicate a predominance of herpesviruses from the Mardivirus genus, coming from either vaccinal origin or presumably asymptomatic infection.

View Article and Find Full Text PDF

A common challenge in avian cell biology is the generation of differentiated cell-lines, especially in the keratinocyte lineage. Only a few avian cell-lines are available and very few of them show an interesting differentiation profile. During the last decade, mammalian embryonic stem cell-lines were shown to differentiate into almost all lineages, including keratinocytes.

View Article and Find Full Text PDF

Marek's disease is one of the most common viral diseases of poultry affecting chicken flocks worldwide. The disease is caused by an alphaherpesvirus, the Marek's disease virus (MDV), and is characterized by the rapid onset of multifocal aggressive T-cell lymphoma in the chicken host. Although several viral oncogenes have been identified, the detailed mechanisms underlying MDV-induced lymphomagenesis are still poorly understood.

View Article and Find Full Text PDF

Marek's disease virus (MDV) is a highly contagious herpesvirus which induces T-cell lymphoma in the chicken. This virus is still spreading in flocks despite forty years of vaccination, with important economical losses worldwide. The feather follicles, which anchor feathers into the skin and allow their morphogenesis, are considered as the unique source of MDV excretion, causing environmental contamination and disease transmission.

View Article and Find Full Text PDF

Marek's disease virus (MDV) is a highly contagious herpesvirus which induces immunosuppression and T-cell lymphoma in chicken. This virus still circulates in flocks despite forty years of vaccination, with important economical losses at the world level. The feather follicles, which allow feathers morphogenesis and their anchor into the skin, are the unique known source of MDV excretion.

View Article and Find Full Text PDF

Marek's disease virus (MDV) is an alpha-herpesvirus causing Marek's disease in chickens, mostly associated with T-cell lymphoma. VP22 is a tegument protein abundantly expressed in cells during the lytic cycle, which is essential for MDV spread in culture. Our aim was to generate a pathogenic MDV expressing a green fluorescent protein (EGFP) fused to the N-terminus of VP22 to better decipher the role of VP22 in vivo and monitor MDV morphogenesis in tumors cells.

View Article and Find Full Text PDF

Marek's disease virus (MDV) is a highly contagious virus that induces T-lymphoma in chicken. This viral infection still circulates in poultry flocks despite the use of vaccines. With the emergence of new virulent strains in the field over time, MDV remains a serious threat to the poultry industry.

View Article and Find Full Text PDF