Background: Recent evidence indicates that osteoarthritis (OA) may be a systemic disease since mesenchymal stem cells (MSCs) from OA patients express type X collagen, a marker of late stage chondrocyte hypertrophy (associated with endochondral ossification). We recently showed that the expression of type X collagen was suppressed when MSCs from OA patients were cultured on nitrogen (N)-rich plasma polymer layers, which we call "PPE:N" (N-doped plasma-polymerized ethylene, containing up to 36 atomic percentage (at.% ) of N.
View Article and Find Full Text PDFPurpose: To investigate the influence of targeted trypsin digestion and 16 hours compression loading on MR parameters and the mechanical and biochemical properties of bovine disc segments.
Materials And Methods: Twenty-two 3-disc bovine coccygeal segments underwent compression loading for 16 hours after the nucleus pulposus (NP) of each disc was injected with a solution of trypsin or buffer. The properties of the NP and annulus fibrosus (AF) tissues of each disc were analyzed by quantitative MRI, biochemical tests, and confined compression tests.
Study Design: The structural integrity of the nucleus pulposus (NP) of intervertebral discs was targeted by enzyme-specific degradations to correlate their effects to the magnetic resonance (MR) signal.
Objective: To develop quantitative MR imaging as an accurate and noninvasive diagnostic tool to better understand and treat disc degeneration.
Summary Of Background Data: Quantitative MR analysis has been previously shown to reflect not only the disc matrix composition, but also the structural integrity of the disc matrix.
Recent evidence indicates that a major drawback of current cartilage- and disc-tissue engineering is that human mesenchymal stem cells (MSCs) rapidly express type X collagen-a marker of chondrocyte hypertrophy associated with endochondral ossification. Some studies have attempted to use growth factors to inhibit type X collagen expression, but none to date has addressed the possible effect of the substratum on chondrocyte hypertrophy. Here, we sought to examine the growth and differentiation potential of human MSCs cultured on two polymer types, polypropylene and nylon-6, both of which have been surface-modified by glow discharge plasma treatment in ammonia gas.
View Article and Find Full Text PDFDegenerative disc disease has been implicated as a major component of spine pathology. However, although biological repair of the degenerate disk would be the ideal treatment, there is no universally accepted scaffold for tissue engineering of the intervertebral disk. To help remedy this, we investigated the gelation kinetics of various concentrations (2.
View Article and Find Full Text PDFSpine (Phila Pa 1976)
December 2004
Study Design: The contents of DNA, proteoglycan, type II collagen, and denatured type II collagen in the bovine coccygeal intervertebral discs were examined in situ in relation to disc level, age, and tissue region.
Objective: To determine whether bovine coccygeal discs are a suitable model to study human lumbar discs.
Summary Of Background Data: Bovine coccygeal discs have been suggested as a suitable alternative model because they are readily available, in contrast to human discs, and represent a common source of tissue in the disc field.
While tremendous work has been performed to characterize degenerative disc disease through gross morphologic, biochemical, and histologic grading schemes, the development of an accurate and noninvasive diagnostic tool is required to objectively detect changes in the matrix with aging and disc degeneration. In the present study, quantitative magnetic resonance was used to determine if the quality of the nutritional supply to the intervertebral disc at various ages and levels of degeneration could be assessed through measurement of the apparent diffusion coefficients (ADCs). Modifications of the nucleus pulposus matrix content, specifically of water and glycosaminoglycan contents, with age and disc degeneration, were reflected in correlating changes in the ADCs.
View Article and Find Full Text PDFTo date, there have been no reports on the effect on disc cells of the intervertebral disc (IVD) of the amino terminal peptide of link protein (DHLSDNYTLDHDRAIH) (link N) which is generated by the cleavage of human link protein by stromelysins 1 and 2, gelatinase A and B, and collagenase between His(16) and Ile(17). However, link N has been shown to act as a growth factor and stimulate synthesis of proteoglycans and collagen by chondrocytes of human articular cartilage. There are also no studies on the effect of link N on type IX collagen in any tissue.
View Article and Find Full Text PDFNatural coral graft substitutes are derived from the exoskeleton of marine madreporic corals. Researchers first started evaluating corals as potential bone graft substitutes in the early 1970s in animals and in 1979 in humans. The structure of the commonly used coral, Porites, is similar to that of cancellous bone and its initial mechanical properties resemble those of bone.
View Article and Find Full Text PDFCoral bone graft substitutes have been supplemented in the past with growth factors to further enhance bone regeneration in defects. Little is known, however, on the dynamics of protein release from coral. Coral particles were studied for their ability to release transforming growth factor beta 1 (TGF-beta1) in vitro, under different adsorption conditions.
View Article and Find Full Text PDF