In order to reduce the total number of experiments for achieving the best conditions for Cr(VI) uptake using Araucaria angustifolia (named pinhão) wastes as a biosorbent, three statistical design of experiments were carried out. A full 2(4) factorial design with two blocks and two central points (20 experiments) was experimented (pH, initial metallic ion concentration-C(o), biosorbent concentration-X and time of contact-t), showing that all the factors were significant; besides, several interactions among the factors were also significant. These results led to the performance of a Box-Behnken surface analysis design with three factors (X, C(o) and t) and three central points and just one block (15 experiments).
View Article and Find Full Text PDFSpectrochim Acta A Mol Biomol Spectrosc
November 2005
The 1,3-diaminepropane-3-propyl-anchored silica gel (DAPPS) was successfully employed as a sorbent in a spectrophotometric flow system for the preconcentration of Cu(2+) in digests of biological materials (maize powder, soybean, citrus leaves, corn stalks) as well as water samples (river, stream, streamlet, springwater and well). The system presented a minicolumn packed with DAPPS, where the sample solution was passed through it for a period of time, and subsequently, an eluent solution, stripped-out the retained analyte which was further determined with DDTC at 460 nm. The better preconcentration conditions utilized were: 120s loading, 60s elution, 30s regeneration of the column, loading flow rate 6.
View Article and Find Full Text PDFA new sorbent was synthesized by anchoring 7-amino-4-azaheptyltrimetoxisilane, freshly prepared, to silica gel, producing 7-amino-4-azaheptyl anchored silica gel (AAHSG). This material was characterized by infrared spectroscopy (IR), elemental analysis (CHN), and nitrogen adsorption-desorption isotherms. Isotherms of the adsorption of Fe3+, Fe2+ and Cu2+ on AAHSG were recorded, which indicated that Fe3+ presents a higher affinity by the sorbent.
View Article and Find Full Text PDF