Expert Rev Med Devices
October 2022
Introduction: Image-guided endovascular interventions, performed using the insertion and navigation of catheters through the vasculature, have been increasing in number over the years, as minimally invasive procedures continue to replace invasive surgical procedures. Such endovascular interventions are almost exclusively performed under x-ray fluoroscopy, which has the best spatial and temporal resolution of all clinical imaging modalities. Magnetic resonance imaging (MRI) offers unique advantages and could be an attractive alternative to conventional x-ray guidance, but also brings with it distinctive challenges.
View Article and Find Full Text PDFPurpose: To evaluate radiolabeled doxorubicin (Dox) analogs as tracers of baseline Dox biodistribution in vivo during hepatic intra-arterial chemotherapy and to assess the efficacy of ChemoFilter devices to bind Dox in vitro.
Materials And Methods: In an in vitro static experiment, [fluorine-18]N-succinimidyl 4-fluorobenzoate ([F]SFB) and [fluorine-18]fluorobenzoyl-doxorubicin ([F]FB-Dox) were added to a beaker containing a filter material (Dowex cation exchange resin, single-stranded DNA (ssDNA) resin, or sulfonated polymer coated mesh). In an in vitro flow model, [F]FB-Dox was added into a Dox solution in phosphate-buffered saline, and the solution flowed via a syringe column containing the filter materials.
Interventional magnetic resonance imaging (MRI) could allow for diagnosis and immediate treatment of ischemic stroke; however, such endovascular catheter-based procedures under MRI guidance are inherently difficult. One major challenge is tracking the tip of the catheter, as standard fabrication methods for building inductively coupled coil markers are rigid and bulky. Here, we report a new approach that uses aerosol jet deposition to three-dimensional (3-D) print an inductively coupled RF coil marker on a polymer catheter.
View Article and Find Full Text PDFTo assess the visualization and efficacy of a wireless resonant circuit (wRC) catheter system for carotid artery occlusion and embolectomy under real-time MRI guidance in vivo, and to compare MR imaging modality with x-ray for analysis of qualitative physiological measures of blood flow at baseline and after embolectomy. The wRC catheter system was constructed using a MR compatible PEEK fiber braided catheter (Penumbra, Inc, Alameda, CA) with a single insulated longitudinal copper loop soldered to a printed circuit board embedded within the catheter wall. In concordance with IACUC protocol (AN103047), in vivo carotid artery navigation and embolectomy were performed in four farm pigs (40-45 kg) under real-time MRI at 1.
View Article and Find Full Text PDFTo computationally optimize the design of an endovascular magnetic filtration device that binds iron oxide nanoparticles and to validate simulations with experimental results of prototype devices in physiologic flow testing. Three-dimensional computational models of different endovascular magnetic filter devices assessed magnetic particle capture. We simulated a series of cylindrical neodymium N52 magnets and capture of 1500 iron oxide nanoparticles infused in a simulated 14 mm-diameter vessel.
View Article and Find Full Text PDFTo report a novel method using immobilized DNA within mesh to sequester drugs that have intrinsic DNA binding characteristics directly from flowing blood. DNA binding experiments were carried out in vitro with doxorubicin in saline (PBS solution), porcine serum, and porcine blood. Genomic DNA was used to identify the concentration of DNA that shows optimum binding clearance of doxorubicin from solution.
View Article and Find Full Text PDFBackground: Cardiac resynchronization therapy (CRT) with multipoint left ventricular (LV) pacing (MultiPoint™ Pacing [MPP], St. Jude Medical) improves acute LV function and LV reverse remodeling at 3 months.
Objective: The purpose of this study was to test the hypothesis that MPP can also improve LV function at 12 months.
J Magn Reson Imaging
January 2013
Purpose: To rapidly calculate and validate subject-specific field maps based on the three-dimensional shape of the bilateral breast volume.
Materials And Methods: Ten healthy female volunteers were scanned at 3 Tesla using a multi-echo sequence that provides water, fat, in-phase, out-of-phase, and field map images. A shape-specific binary mask was automatically generated to calculate a computed field map using a dipole field model.
Objective: The purpose of this study was to measure and compare the relaxation times of musculoskeletal tissues at 3.0 T and 7.0 T, and to use these measurements to select appropriate parameters for musculoskeletal protocols at 7.
View Article and Find Full Text PDFWe developed a deep-ultraviolet (UV) microscope capable of imaging cell mitosis and motility at 280 nm for 45 min with minimal UV-induced toxicity, and for 6 h before the onset of visible cell death in cultured human and mouse cells. Combined with computational methods that convert the intensity of each pixel into an estimate of mass, deep-UV microscopy images generate maps of nucleic acid mass, protein mass and fluorescence yield in unlabeled cells.
View Article and Find Full Text PDF