The objective of this study was to investigate the influence of talc and humidity conditions during storage on the crystal growth of guaifenesin on the surface of melt-extruded matrix tablets. Tablets consisted of the model drug guaifenesin in a matrix of either Acryl-EZE(R) or Eudragit(R) L10055 and either no talc, 25% or 50% talc. After processing, the hot-melt-extruded matrix tablets were supersaturated with amorphous guaifenesin, which resulted in the development of guaifenesin drug crystals on exposed surfaces of the tablet during storage (all tablets were stored at 24 degrees C).
View Article and Find Full Text PDFObjectives: This study investigated the effect of aqueous film coating on the recrystallization of guaifenesin from acrylic, hot-melt extruded matrix tablets.
Methods: After hot-melt extrusion, matrix tablets were film-coated with either hypromellose or ethylcellulose. The effects of the coating polymer, curing and storage conditions, polymer weight gain, and core guaifenesin concentration on guaifenesin recrystallization were investigated.
Incomplete drug release and particle size-dependent dissolution performance can compromise the quality of controlled release matrix systems. The objective of the current study was to investigate the ability of citric acid monohydrate (CA MH) to enhance the release of diltiazem hydrochloride from melt extruded Eudragit RS PO tablets and to eliminate drug particle size effects. Preformulation studies demonstrated the thermal stability of all components, drug insolubility in the polymer but miscibility with the CA MH.
View Article and Find Full Text PDF