Publications by authors named "Caroline C Smith"

Background: Anaplastic sarcoma of the kidney (ASK) is a DICER1-related neoplasm first identified as a distinctive tumor type through the evaluation of unusual cases of putative anaplastic Wilms tumors. Subsequent case reports identified the presence of biallelic DICER1 variants as well as progression from cystic nephroma, a benign DICER1-related neoplasm. Despite increasing recognition of ASK as a distinct entity, the optimal treatment remains unclear.

View Article and Find Full Text PDF

The retention of episodic-like memory is enhanced, in humans and animals, when something novel happens shortly before or after encoding. Using an everyday memory task in mice, we sought the neurons mediating this dopamine-dependent novelty effect, previously thought to originate exclusively from the tyrosine-hydroxylase-expressing (TH) neurons in the ventral tegmental area. Here we report that neuronal firing in the locus coeruleus is especially sensitive to environmental novelty, locus coeruleus TH neurons project more profusely than ventral tegmental area TH neurons to the hippocampus, optogenetic activation of locus coeruleus TH neurons mimics the novelty effect, and this novelty-associated memory enhancement is unaffected by ventral tegmental area inactivation.

View Article and Find Full Text PDF

When circulating 17β estradiol (E2) is elevated to proestrous levels, hippocampus-dependent learning and memory is enhanced in female rodents, nonhuman primates, and women due to heightened synaptic function at hippocampal synapses. We previously reported that proestrous-like levels of E2 administered to young adult ovariectomized (OVX) female rats increases the magnitude of LTP at CA3 Schaffer collateral (SC)-CA1 synapses only when dendritic spine density, the NMDAR/AMPAR ratio, and current mediated by GluN2B-containing NMDA receptors (NMDARs) are simultaneously increased. We also reported that this increase in GluN2B-mediated NMDAR current in area CA1 is causally related to the E2-induced increase in novel object recognition, tying together heightened synaptic function with improved learning and memory.

View Article and Find Full Text PDF

Studies in humans and rodents support a role for muscarinic ACh receptor (mAChR) and nicotinic AChR in learning and memory, and both regulate hippocampal synaptic plasticity using complex and often times opposing mechanisms. Acetylcholinesterase (AChE) inhibitors are commonly prescribed to enhance cholinergic signaling in Alzheimer's disease in hopes of rescuing cognitive function, caused, in part, by degeneration of cholinergic innervation to the hippocampus and cortex. Unfortunately, therapeutic efficacy is moderate and inconsistent, perhaps due to unanticipated mechanisms.

View Article and Find Full Text PDF

Rationale: Pulmonary nontuberculous mycobacterial (PNTM) disease has increased over the past several decades, especially in older women. Despite extensive investigation, no consistent immunological abnormalities have been found. Using evidence from diseases such as cystic fibrosis and primary ciliary dyskinesia, in which mucociliary dysfunction predisposes subjects to high rates of nontuberculous mycobacterial disease that increase with age, we investigated correlates of mucociliary function in subjects with PNTM infections and healthy control subjects.

View Article and Find Full Text PDF

17β-estradiol (E2), at high circulating levels, enhances learning and memory in many women, making it a clinical treatment for hormone-related cognitive decline in aging. However, the mechanisms stimulated by E2, which are responsible for its cognitive enhancing effects, remain incompletely defined. Using an ovariectomized rat model, we previously reported that increasing plasma E2 enhances the magnitude of long-term potentiation (LTP) at hippocampal CA3-CA1 synapses, which is caused by a selective increase in current mediated by NR2B-containing NMDARs, leading to an increase in the NMDAR/AMPAR ratio.

View Article and Find Full Text PDF

The presynaptic source of dopamine in the CA1 field of dorsal hippocampus is uncertain due to an anatomical mismatch between dopaminergic terminals and receptors. We show, in an in vitro slice preparation from C57BL/6 male mice, that a dopamine (DA) D1 receptor (D1R)-mediated enhancement in glutamate synaptic transmission occurs following release of endogenous DA with amphetamine exposure. It is assumed DA is released from terminals innervating from the ventral tegmental area (VTA) even though DA transporter (DAT)-positive fibers are absent in hippocampus, a region with abundant D1Rs.

View Article and Find Full Text PDF

Whether estrogen replacement is beneficial to cognitive health is controversial. Some studies have shown that estrogen replacement therapy (ERT) relieves memory impairment associated with menopause in women, whereas others suggest that estrogen not only is incapable of providing a benefit, but actually can be detrimental. One possible explanation for this discrepancy in study findings could be the varying time after menopause at which ERT is initiated.

View Article and Find Full Text PDF

When circulating estrogen levels decline as a natural consequence of menopause and aging in women, there is an increased incidence of deficits in working memory. In many cases, these deficits are rescued by estrogen replacement therapy. These clinical data therefore highlight the importance of defining the biological pathways linking estrogen to the cellular substrates of learning and memory.

View Article and Find Full Text PDF

Intact cholinergic innervation from the medial septum and noradrenergic innervation from the locus ceruleus are required for hippocampal-dependent learning and memory. However, much remains unclear about the precise roles of acetylcholine (ACh) and norepinephrine (NE) in hippocampal function, particularly in terms of how interactions between these two transmitter systems might play an important role in synaptic plasticity. Previously, we reported that activation of either muscarinic M(1) or adrenergic alpha1 receptors induces activity- and NMDA receptor-dependent long-term depression (LTD) at CA3-CA1 synapses in acute hippocampal slices, referred to as muscarinic LTD (mLTD) and norepinephrine LTD (NE LTD), respectively.

View Article and Find Full Text PDF

The developing reproductive tract is sensitive to endocrine perturbation. Bisphenol A (BPA), a xenoestrogen, is a common component of food storage plastics and dental composites. We tested the ability of BPA to alter expression of HOXA10, a gene necessary for uterine development.

View Article and Find Full Text PDF

Estradiol, through activation of genomic estrogen receptors, induces changes in synaptic morphology and function in hippocampus, a brain region important for memory acquisition. Specifically, this hormone increases CA1 pyramidal cell dendritic spine density, NMDA receptor (NMDAR)-mediated transmission, and the magnitude of long-term potentiation (LTP) at CA3-CA1 synapses. We recently reported that the estradiol-induced increase in LTP magnitude occurs only when there is a simultaneous increase in the fractional contribution of NMDAR-mediated transmission relative to AMPA receptor transmission, suggesting a direct role for the increase in NMDAR transmission to the heightened LTP magnitude.

View Article and Find Full Text PDF

Elevated levels of estradiol enhance learning in mammals, including humans, likely a result of hormone-induced heightened plasticity at CA3-CA1 synapses. The increase in long-term potentiation (LTP) magnitude is considered to be a consequence of the estradiol-induced increase in dendritic spine density and NMDA receptor (NMDAR)-mediated transmission; however, direct evidence linking these changes together is lacking. Alternatively, alterations in GABAergic inhibition or presynaptic release probability could contribute.

View Article and Find Full Text PDF