Publications by authors named "Caroline C Krueger"

Reversing CD8 T cell dysfunction is crucial in treating chronic hepatitis B virus (HBV) infection, yet specific molecular targets remain unclear. Our study analyzed co-signaling receptors during hepatocellular priming and traced the trajectory and fate of dysfunctional HBV-specific CD8 T cells. Early on, these cells upregulate PD-1, CTLA-4, LAG-3, OX40, 4-1BB, and ICOS.

View Article and Find Full Text PDF

Virus-like particles (VLPs) are used in different marketed vaccines and are able to induce potent antibody responses. The innate pattern recognition receptors TLR7/8 recognize single stranded (ss) RNA naturally packaged into some VLPs and have been shown to enhance the production of IgG antibodies upon immunization. Here we demonstrate that, upon immunization with RNA-loaded bacteriophage-derived VLP Qβ, TLR7 signaling accelerates germinal center formation, promotes affinity/avidity maturation of VLP-specific IgG and isotype switching to IgG2b/2c.

View Article and Find Full Text PDF

Most vaccines aim at inducing durable antibody responses and are designed to elicit strong B cell activation and plasma cell (PC) formation. Here we report characteristics of a recently described secondary PC population that rapidly originates from memory B cells (MBCs) upon challenge with virus-like particles (VLPs). Upon secondary antigen challenge, all VLP-specific MBCs proliferated and terminally differentiated to secondary PCs or died, as they could not undergo multiple rounds of re-stimulation.

View Article and Find Full Text PDF

Secondary plasma cells (PCs) originate from memory B cells and produce increased levels of antibodies with higher affinity compared to PCs generated during primary responses. Here we demonstrate that virus-like particles (VLPs) only induce secondary PCs in the presence of toll-like receptor (TLR) 7 and if they are loaded with RNA. Furthermore, adoptive transfer experiments demonstrate that RNA and TLR7 signaling are required for secondary PC generation, both at the level of memory B cell as well as PC differentiation.

View Article and Find Full Text PDF

Antioxidant systems maintain cellular redox homeostasis. The thioredoxin-1 (Trx1) and the glutathione (GSH)/glutaredoxin-1 (Grx1) systems are key players in preserving cytosolic redox balance. In fact, T lymphocytes critically rely on reducing equivalents from the Trx1 system for DNA biosynthesis during metabolic reprogramming upon activation.

View Article and Find Full Text PDF

Lysosome function is essential in cellular homeostasis. In addition to its recycling role, the lysosome has recently been recognized as a cellular signaling hub. We have shown in mammary epithelial cells, both and , that signal transducer and activator of transcription 3 (Stat3) modulates lysosome biogenesis and can promote the release of lysosomal proteases that culminates in cell death.

View Article and Find Full Text PDF

DNA rich in unmethylated CG motifs (CpGs) engage Toll-Like Receptor 9 (TLR-9) in endosomes and are well described stimulators of the innate and adaptive immune system. CpGs therefore can efficiently improve vaccines' immunogenicity. Packaging CpGs into nanoparticles, in particular into virus-like particles (VLPs), improves the pharmacological characteristics of CpGs as the protein shell protects them from DNAse activity and delivers the oligomers to the endosomal compartments of professional antigen presenting cells (APCs).

View Article and Find Full Text PDF