Publications by authors named "Caroline Birer Williams"

Monoterpene indole alkaloids (MIAs) are valuable metabolites produced in numerous medicinal plants from the Apocynaceae family such as Alstonia scholaris, which synthesizes strictamine, a MIA displaying neuropharmacological properties of a potential importance. To get insights into the MIA metabolism in A. scholaris, we studied here both the spatial and transcriptional regulations of MIA genes by performing a robust transcriptomics analysis of the main plant organs, leaf epidermis but also by sequencing RNA from leaves transiently overexpressing the master transcriptional regulator MYC2.

View Article and Find Full Text PDF
Article Synopsis
  • Plant-specialized metabolism is a rich source of bioactive compounds, like monoterpene indole alkaloids (MIAs), known for their health benefits including anticancer and neuroactive properties.
  • The types of MIAs, particularly pachysiphine derivatives, have promising medical applications but are found in very low quantities in certain plant species, and there is a lack of genomic data needed to enhance their production.
  • This study presents the genome sequence of the toad tree (Tabernaemontana elegans) and identifies genes that can synthesize pachysiphine, leading to engineered MIAs in yeast, thus paving the way for better production of these valuable compounds for pharmaceutical use.
View Article and Find Full Text PDF

Monoterpene indole alkaloids (MIAs) make up a highly bioactive class of metabolites produced by a range of tropical and subtropical plants. The corynanthe-type MIAs are a stereochemically complex subclass with therapeutic potential against a large number of indications including cancer, psychotic disorders, and erectile dysfunction. Here, we report yeast-based cell factories capable of de novo production of corynanthe-type MIAs rauwolscine, yohimbine, tetrahydroalstonine, and corynanthine.

View Article and Find Full Text PDF

Specialized metabolites possess diverse interesting biological activities and some cardenolides- and monoterpene indole alkaloids- (MIAs) derived pharmaceuticals are currently used to treat human diseases such as cancers or hypertension. While these two families of biocompounds are produced by specific subfamilies of , one member of this medicinal plant family, the succulent tree Drake (also known as Madagascar palm), does not produce such specialized metabolites. To explore the evolutionary paths that have led to the emergence and loss of cardenolide and MIA biosynthesis in , we sequenced and assembled the genome by combining Oxford Nanopore Technologies long-reads and Illumina short-reads.

View Article and Find Full Text PDF

Monoterpene indole alkaloids (MIAs) are a structurally diverse family of specialized metabolites mainly produced in Gentianales to cope with environmental challenges. Due to their pharmacological properties, the biosynthetic modalities of several MIA types have been elucidated but not that of the yohimbanes. Here, we combine metabolomics, proteomics, transcriptomics and genome sequencing of Rauvolfia tetraphylla with machine learning to discover the unexpected multiple actors of this natural product synthesis.

View Article and Find Full Text PDF

The Madagascar periwinkle, , belongs to the family. This medicinal plant, endemic to Madagascar, produces many important drugs including the monoterpene indole alkaloids (MIA) vincristine and vinblastine used to treat cancer worldwide. Here, we provide a new version of the genome sequence obtained through the combination of Oxford Nanopore Technologies long-reads and Illumina short-reads.

View Article and Find Full Text PDF

Vinca minor, also known as the lesser periwinkle, is a well-known species from the Apocynaceae, native to central and southern Europe. This plant synthesizes monoterpene indole alkaloids, which are a class of specialized metabolites displaying a wide range of bioactive- and pharmacologically important properties. Within the almost 50 monoterpene indole alkaloids it produces, V.

View Article and Find Full Text PDF

The bacterial exometabolome consists of a vast array of specialized metabolites, many of which are only produced in response to specific environmental stimuli. For this reason, it is desirable to control the extracellular environment with a defined growth medium composed of pure ingredients. However, complex (undefined) media are expected to support the robust growth of a greater variety of microorganisms than defined media.

View Article and Find Full Text PDF

Communication within the microbiome occurs through an immense diversity of small molecules. Capturing these microbial interactions is a significant challenge due to the complexity of the exometabolome and its sensitivity to environmental stimuli. Traditional methods for acquiring exometabolomic data from interacting microorganisms are limited by their low throughput or lack of sampling depth.

View Article and Find Full Text PDF

There are many gaps in scientific knowledge about the clinical significance of pharmacokinetic natural product-drug interactions (NPDIs) in which the natural product (NP) is the precipitant and a conventional drug is the object. The National Center for Complimentary and Integrative Health created the Center of Excellence for NPDI Research (NaPDI Center) (www.napdi.

View Article and Find Full Text PDF