Purpose: The purpose of this study was to produce and characterize human tissue-engineered corneas reconstructed using all three corneal cell types (epithelial, stromal, and endothelial cells) by the self-assembly approach.
Methods: Fibroblasts cultured in medium containing serum and ascorbic acid secreted their own extracellular matrix and formed sheets that were superposed to reconstruct a stromal tissue. Endothelial and epithelial cells were seeded on each side of the reconstructed stroma.
Invest Ophthalmol Vis Sci
June 2009
Purpose: To investigate the effect of the tissue origin of stromal fibroblasts and epithelial cells on reconstructed corneas in vitro.
Methods: Four types of constructs were produced by the self-assembly approach using the following combinations of human cells: corneal fibroblasts/corneal epithelial cells, corneal fibroblasts/skin epithelial cells, skin fibroblasts/corneal epithelial cells, skin fibroblasts/skin epithelial cells. Fibroblasts were cultured with ascorbic acid to produce stromal sheets on which epithelial cells were cultured.
Purpose: To evaluate the functional outcome of tissue-engineered corneal endothelium reconstructed on a devitalized carrier and transplanted in the living feline model.
Methods: Eighteen healthy adult cats underwent full-thickness corneal transplantation. In 11 animals, the donor cornea was reconstructed from cultured allogeneic feline corneal endothelial cells seeded on the denuded Descemet's membrane of a devitalized human cornea.
The difficulties in obtaining good quality tissue for the replacement of corneas of patients suffering from endothelial dysfunctions have prompted us to evaluate the feasibility of producing a tissue-engineered (TE) corneal endothelium using devitalized human stromal carriers. Thus, corneal substitutes were produced by seeding cultured feline corneal endothelial cells on top of previously frozen human corneal stromas. After two weeks of culture to allow attachment and spreading of the seeded cells, the TE corneal endothelium was stained with alizarin red for endothelial cell count and fixed for histology, immunofluorescence labeling, scanning and transmission electron microscopy.
View Article and Find Full Text PDF