White's lab established that strong, continuous stimulation with tumour necrosis factor-α (TNFα) can induce sustained oscillations in the subcellular localisation of the transcription factor nuclear factor κB (NF-κB). But the intensity of the TNFα signal varies substantially, from picomolar in the blood plasma of healthy organisms to nanomolar in diseased states. We report on a systematic survey using computational bifurcation theory to explore the relationship between the intensity of TNFα stimulation and the existence of sustained NF-κB oscillations.
View Article and Find Full Text PDFBackground: Sustained stimulation with tumour necrosis factor alpha (TNF-alpha) induces substantial oscillations--observed at both the single cell and population levels--in the nuclear factor kappa B (NF-kappa B) system. Although the mechanism has not yet been elucidated fully, a core system has been identified consisting of a negative feedback loop involving NF-kappa B (RelA:p50 hetero-dimer) and its inhibitor I-kappa B-alpha. Many authors have suggested that this core oscillator should couple to other oscillatory pathways.
View Article and Find Full Text PDFNuclear factor kappa B (NF-kappaB) signalling is activated by cellular stress and inflammation and regulates cytokine expression. We applied single-cell imaging to investigate dynamic responses to different doses of tumour necrosis factor alpha (TNFalpha). Lower doses activated fewer cells and those responding showed an increasingly variable delay in the initial NF-kappaB nuclear translocation and associated IkappaBalpha degradation.
View Article and Find Full Text PDFThe nuclear factor kappaB (NF-kappaB) transcription factor regulates cellular stress responses and the immune response to infection. NF-kappaB activation results in oscillations in nuclear NF-kappaB abundance. To define the function of these oscillations, we treated cells with repeated short pulses of tumor necrosis factor-alpha at various intervals to mimic pulsatile inflammatory signals.
View Article and Find Full Text PDFUnderstanding how mammalian cells function requires a dynamic perspective. However, owing to the complexity of signalling networks, these non-linear systems can easily elude human intuition. The central aim of systems biology is to improve our understanding of the temporal complexity of cell signalling pathways, using a combination of experimental and computational approaches.
View Article and Find Full Text PDF