Diffuse large B cell lymphoma (DLBCL) is an aggressive non-Hodgkin lymphoma and the most frequently diagnosed hematologic malignancy in the United States. DLBCL exhibits significant molecular and clinical heterogeneity, and at least a third of patients are left uncured with standard frontline chemoimmunotherapy. As such, there is a critical need to identify novel targeted therapies to improve outcomes.
View Article and Find Full Text PDFChimeric antigen receptor T-cell therapy targeting CD19 (CAR-19) promotes impressive durable remissions for relapsed or refractory (rel/ref) large B-cell lymphoma (LBCL) patients with historically poor prognoses. Despite this, over half of patients still fail to respond or eventually progress. Studies to reveal mechanisms of resistance have examined host clinical parameters, CAR-19 product composition, and tumor microenvironment (TME) alterations, while a relative paucity of studies has analyzed contributions by genomic alterations in tumor cells.
View Article and Find Full Text PDFCD19-directed chimeric antigen receptor (CAR-19) T cells are groundbreaking immunotherapies approved for use against large B-cell lymphomas. Although host inflammatory and tumor microenvironmental markers associate with efficacy and resistance, the tumor-intrinsic alterations underlying these phenomena remain undefined. CD19 mutations associate with resistance but are uncommon, and most patients with relapsed disease retain expression of the wild-type receptor, implicating other genomic mechanisms.
View Article and Find Full Text PDFTactical disruption of protein synthesis is an attractive therapeutic strategy, with the first-in-class eIF4A-targeting compound zotatifin in clinical evaluation for cancer and COVID-19. The full cellular impact and mechanisms of these potent molecules are undefined at a proteomic level. Here, we report mass spectrometry analysis of translational reprogramming by rocaglates, cap-dependent initiation disruptors that include zotatifin.
View Article and Find Full Text PDFIn the version of this article originally published, an asterisk was omitted from Fig. 1a. The asterisk has been added to the figure.
View Article and Find Full Text PDFIn the version of this article originally published, some text above the "Tri-nucleotide sequence motifs" label in Fig. 2a appeared incorrectly. The text was garbled and should have appeared as nucleotide codes.
View Article and Find Full Text PDFDiffuse large B cell lymphoma (DLBCL), the most common lymphoid malignancy in adults, is a clinically and genetically heterogeneous disease that is further classified into transcriptionally defined activated B cell (ABC) and germinal center B cell (GCB) subtypes. We carried out a comprehensive genetic analysis of 304 primary DLBCLs and identified low-frequency alterations, captured recurrent mutations, somatic copy number alterations, and structural variants, and defined coordinate signatures in patients with available outcome data. We integrated these genetic drivers using consensus clustering and identified five robust DLBCL subsets, including a previously unrecognized group of low-risk ABC-DLBCLs of extrafollicular/marginal zone origin; two distinct subsets of GCB-DLBCLs with different outcomes and targetable alterations; and an ABC/GCB-independent group with biallelic inactivation of TP53, CDKN2A loss, and associated genomic instability.
View Article and Find Full Text PDF