Premise: Endophytic plant-microbe interactions range from mutualistic relationships that confer important ecological and agricultural traits to neutral or quasi-parasitic relationships. In contrast to root-associated endophytes, the role of environmental and host-related factors in the acquisition of leaf endophyte communities at broad spatial and phylogenetic scales remains sparsely studied. We assessed endofoliar diversity to test the hypothesis that membership in these microbial communities is driven primarily by abiotic environment and host phylogeny.
View Article and Find Full Text PDFAlthough the frequency of ancient hybridization across the Tree of Life is greater than previously thought, little work has been devoted to uncovering the extent, timeline, and geographic and ecological context of ancient hybridization. Using an expansive new dataset of nuclear and chloroplast DNA sequences, we conducted a multifaceted phylogenomic investigation to identify ancient reticulation in the early evolution of oaks (Quercus). We document extensive nuclear gene tree and cytonuclear discordance among major lineages of Quercus and relatives in Quercoideae.
View Article and Find Full Text PDFNitrogen (N)-fixing symbiosis is critical to terrestrial ecosystems, yet possession of this trait is known for few plant species. Broader presence of the symbiosis is often indirectly determined by phylogenetic relatedness to taxa investigated via manipulative experiments. This data gap may ultimately underestimate phylogenetic, spatial, and temporal variation in N-fixing symbiosis.
View Article and Find Full Text PDFPremise: Astragalus (Fabaceae), with more than 3000 species, represents a globally successful radiation of morphologically highly similar species predominant across the northern hemisphere. It has attracted attention from systematists and biogeographers, who have asked what factors might be behind the extraordinary diversity of this important arid-adapted clade and what sets it apart from close relatives with far less species richness.
Methods: Here, for the first time using extensive phylogenetic sampling, we asked whether (1) Astragalus is uniquely characterized by bursts of radiation or whether diversification instead is uniform and no different from closely related taxa.
Sapindales is an angiosperm order of high economic and ecological value comprising nine families, c. 479 genera, and c. 6570 species.
View Article and Find Full Text PDFPremise: Phylogenetic studies in the Compositae are challenging due to the sheer size of the family and the challenges they pose for molecular tools, ranging from the genomic impact of polyploid events to their very conserved plastid genomes. The search for better molecular tools for phylogenetic studies led to the development of the family-specific Compositae1061 probe set, as well as the universal Angiosperms353 probe set designed for all flowering plants. In this study, we evaluate the extent to which data generated using the family-specific kit and those obtained with the universal kit can be merged for downstream analyses.
View Article and Find Full Text PDFTraditionally, the generation and use of biodiversity data and their associated specimen objects have been primarily the purview of individuals and small research groups. While deposition of data and specimens in herbaria and other repositories has long been the norm, throughout most of their history, these resources have been accessible only to a small community of specialists. Through recent concerted efforts, primarily at the level of national and international governmental agencies over the last two decades, the pace of biodiversity data accumulation has accelerated, and a wider array of biodiversity scientists has gained access to this massive accumulation of resources, applying them to an ever-widening compass of research pursuits.
View Article and Find Full Text PDFWe assembled new plastomes of 19 species of Mikania and of Ageratina fastigiata, Litothamnus nitidus, and Stevia collina, all belonging to tribe Eupatorieae (Asteraceae). We analyzed the structure and content of the assembled plastomes and used the newly generated sequences to infer phylogenetic relationships and study the effects of different data partitions and inference methods on the topologies. Most phylogenetic studies with plastomes ignore that processes like recombination and biparental inheritance can occur in this organelle, using the whole genome as a single locus.
View Article and Find Full Text PDF(Heliantheae, Asteraceae) is a diverse genus in the sunflower family. To date, nearly 200 Asteraceae chloroplast genomes have been sequenced, but the plastomes of remain undescribed. Plastomes in Asteraceae usually show little sequence divergence, consequently, our hypothesis is that species of will be overall conserved.
View Article and Find Full Text PDFA hallmark of flowering plants is their ability to invade some of the most extreme and dynamic habitats, including cold and dry biomes, to a far greater extent than other land plants. Recent work has provided insight to the phylogenetic distribution and evolutionary mechanisms which have enabled this success, yet needed is a synthesis of evolutionary perspectives with plant physiological traits, morphology, and genomic diversity. Linking these disparate components will not only lead to better understand the evolutionary parallelism and diversification of plants with these two strategies, but also to provide the framework needed for directing future research.
View Article and Find Full Text PDFAsteraceae, or the sunflower family, is the largest family of flowering plants and is usually considered difficult to work with, not only due to its size, but also because of the abundant cases of polyploidy and ancient whole-genome duplications. Traditional molecular systematics studies were often impaired by the low levels of variation found in chloroplast markers and the high paralogy of traditional nuclear markers like ITS. Next-generation sequencing and novel phylogenomics methods, such as target capture and Hyb-Seq, have provided new ways of studying the phylogeny of the family with great success.
View Article and Find Full Text PDFPremise: Hybrid capture with high-throughput sequencing (Hyb-Seq) is a powerful tool for evolutionary studies. The applicability of an Asteraceae family-specific Hyb-Seq probe set and the outcomes of different phylogenetic analyses are investigated here.
Methods: Hyb-Seq data from 112 Asteraceae samples were organized into groups at different taxonomic levels (tribe, genus, and species).
The sunflower family, Asteraceae, comprises 10% of all flowering plant species and displays an incredible diversity of form. Asteraceae are clearly monophyletic, yet resolving phylogenetic relationships within the family has proven difficult, hindering our ability to understand its origin and diversification. Recent molecular clock dating has suggested a Cretaceous origin, but the lack of deep sampling of many genes and representative taxa from across the family has impeded the resolution of migration routes and diversifications that led to its global distribution and tremendous diversity.
View Article and Find Full Text PDF