Publications by authors named "Carolina Sanchez-Rico"

Proteins are composed of l-amino acids, but nucleic acids and most oligosaccharides contain d-sugars as building blocks. It is interesting to ask whether this is a coincidence or a consequence of the functional interplay of these biomolecules. One reaction that provides an opportunity to study this interplay is the formation of phosphoramidate-linked peptido RNA from amino acids and ribonucleotides in aqueous condensation buffer.

View Article and Find Full Text PDF

The recognition of -regulatory RNA motifs in human transcripts by RNA binding proteins (RBPs) is essential for gene regulation. The molecular features that determine RBP specificity are often poorly understood. Here, we combined NMR structural biology with high-throughput iCLIP approaches to identify a regulatory mechanism for U2AF2 RNA recognition.

View Article and Find Full Text PDF

Fluorescence-based techniques are widely used to study biomolecular conformations, intra- and intermolecular interactions, and conformational dynamics of macromolecules. Especially for fluorescence-based single-molecule experiments, the choice of the fluorophore and labeling position are highly important. In this work, we studied the biophysical and structural effects that are associated with the conjugation of fluorophores to cysteines in the splicing factor U2AF65 by using single pair Förster resonance energy transfer (FRET) and nuclear magnetic resonance (NMR) spectroscopy.

View Article and Find Full Text PDF

An essential early step in the assembly of human spliceosomes onto pre-mRNA involves the recognition of regulatory RNA cis elements in the 3' splice site by the U2 auxiliary factor (U2AF). The large (U2AF65) and small (U2AF35) subunits of the U2AF heterodimer contact the polypyrimidine tract (Py-tract) and the AG-dinucleotide, respectively. The tandem RNA recognition motif domains (RRM1,2) of U2AF65 adopt closed/inactive and open/active conformations in the free form and when bound to bona fide Py-tract RNA ligands.

View Article and Find Full Text PDF

Cadmium (Cd(2+)) produces toxic effects on various tissues as kidney and liver, so several studies have focused to explore the effect produced by different doses and exposure times of this metal. However, little has been reported about the effect that Cd(2+) shows in the brain in vivo. Hence, this study aimed at comparing the effect of chronic Cd(2+) exposure on antioxidant defense systems of kidney and brain in rats.

View Article and Find Full Text PDF