Type I interferons (IFNs) are pleiotropic cytokines with potent antiviral properties that also promote protective T cell and humoral immunity. Paradoxically, type I IFNs, including the widely expressed IFNβ, also have immunosuppressive properties, including promoting persistent viral infections and treating T-cell-driven, remitting-relapsing multiple sclerosis. Although associative evidence suggests that IFNβ mediates these immunosuppressive effects by impacting regulatory T (Treg) cells, mechanistic links remain elusive.
View Article and Find Full Text PDFIntroduction: Measuring the chemokine CXCL9 in urine by enzyme-linked immunosorbent assay (ELISA) can diagnose acute cellular rejection (ACR) noninvasively after kidney transplantation, but the required 12- to 24-hour turnaround time is not ideal for rapid, clinical decision-making.
Methods: We developed a biolayer interferometry (BLI)-based assay to rapidly measure urinary CXCL9 in <1 hour. We validated this new assay versus standard ELISA in 86 urine samples from kidney transplantation recipients with various diagnoses.
Although spontaneous kidney transplant acceptance/tolerance occurs in mice and occasionally in humans, mechanisms remain unclear. Herein we test the hypothesis that EPO, a hormone predominantly produced by the adult kidney, has immunomodulating properties that are required for spontaneous kidney graft acceptance. , in a manner dependent on the EPO receptor and CD131 on antigen-presenting cells, EPO induced the secretion of active TGF by antigen-presenting cells, which in turn converted naïve CD4 T cells into functional Foxp3 regulatory T cells (Treg).
View Article and Find Full Text PDFObjectives: Our study aims at producing acellular extracellular matrix scaffolds from the human pancreas (hpaECMs) as a first critical step toward the production of a new-generation, fully human-derived bioartificial endocrine pancreas. In this bioartificial endocrine pancreas, the hardware will be represented by hpaECMs, whereas the software will consist in the cellular compartment generated from patient's own cells.
Background: Extracellular matrix (ECM)-based scaffolds obtained through the decellularization of native organs have become the favored platform in the field of complex organ bioengineering.
Currently, immunosuppressive therapy in kidney transplant recipients is center-specific, protocol-driven, and adjusted according to functional or histological evaluation of the allograft and/or signs of drug toxicity or infection. As a result, a large fraction of patients receive too much or too little immunosuppression, exposing them to higher rates of infection, malignancy and drug toxicity, or increased risk of acute and chronic graft injury from rejection, respectively. The individualization of immunosuppression requires the development of assays able to reliably quantify and/or predict the magnitude of the recipient's immune response toward the allograft.
View Article and Find Full Text PDF