The formation of a vertebrate skeletal muscle fiber involves a series of sequential and interdependent events that occurs during embryogenesis. One of these events is myoblast fusion which has been widely studied, yet not completely understood. It was previously shown that during myoblast fusion there is an increase in the expression of Na+/K+-ATPase.
View Article and Find Full Text PDFMyoblasts undergo a series of changes in the composition and dynamics of their plasma membranes during the initial steps of skeletal muscle differentiation. These changes are crucial requirements for myoblast fusion and allow the formation of striated muscle fibers. Membrane microdomains, or lipid rafts, have been implicated in myoblast fusion.
View Article and Find Full Text PDFTherapeutic ultrasound (TU) has been used for the last 50 y in rehabilitation, including treatment of soft tissues. Ultrasound waves can be employed in two different modes of operation, continuous and pulsed, which produce both thermal and non-thermal effects. Despite the large-scale use of TU, there are few scientific studies on its biologic effects during skeletal muscle differentiation.
View Article and Find Full Text PDFCardiac cells are organized in vivo in a complex tridimensional structural organization that is crucial for heart function. While in vitro studies can reveal details about cardiac cell biology, usually cells are grown on simplified two-dimensional (2D) environments. To address these differences, we established a cardiac cell culture composed of both 2D and three-dimensional (3D)-organized cells.
View Article and Find Full Text PDFMuscle fibers are formed during embryonic development by the fusion of mononucleated myoblasts. The spatial structure and molecular composition of the sarcolemma are crucial for the myoblast recognition and fusion steps. Cyclodextrins are a group of substances that have the ability to solubilize lipids through the formation of molecular inclusion complexes.
View Article and Find Full Text PDFCholesterol is a sterol lipid that plays pleiotropic roles in the plasma membrane; it is involved in maintaining membrane fluidity and permeability and the structure of lipid microdomains. Despite its importance, the consequences of membrane cholesterol depletion during cardiac differentiation have not been described. Therefore, we investigated the cellular and molecular mechanisms associated with cholesterol depletion in cultures of chick cardiac cells.
View Article and Find Full Text PDFThe success of peripheral nerve regeneration depends on intrinsic properties of neurons and a favorable environment, although the mechanisms underlying the molecular events during degeneration and regeneration are still not elucidated. Schwann cells are considered one of the best candidates to be closely involved in the success of peripheral nerve regeneration. These cells and invading macrophages are responsible for clearing myelin and axon debris, creating an appropriate route for a successful regeneration.
View Article and Find Full Text PDF