Publications by authors named "Carolina Piletti Chatain"

Lactate is an efficient neuronal energy source, even in presence of glucose. However, the importance of lactate shuttling between astrocytes and neurons for brain activation and function remains to be established. For this purpose, metabolic and hemodynamic responses to sensory stimulation have been measured by functional magnetic resonance spectroscopy and blood oxygen level-dependent (BOLD) fMRI after down-regulation of either neuronal MCT2 or astroglial MCT4 in the rat barrel cortex.

View Article and Find Full Text PDF

The impact of stress on health and well-being is determined by the ability of an individual to cope with challenges imposed by the stressor. Animals exposed to social defeat stress show different patterns of response during confrontations, leading to distinct stress-induced consequences. Using an established resident-intruder paradigm, we explored the outcomes of adopting active or passive coping strategies during a social defeat protocol over peripheral and central nervous system (CNS) levels of inflammatory cytokines, growth factors, glucocorticoid, and oxidative stress markers in male Wistar rats.

View Article and Find Full Text PDF

While the neural circuits mediating normal, adaptive defensive behaviors have been extensively studied, substantially less is currently known about the network mechanisms by which aberrant, pathological anxiety is encoded in the brain. Here we investigate in mice how deletion of Neuroligin-2 (Nlgn2), an inhibitory synapse-specific adhesion protein that has been associated with pathological anxiety and other psychiatric disorders, alters the communication between key brain regions involved in mediating defensive behaviors. To this end, we performed multi-site simultaneous local field potential (LFP) recordings from the basolateral amygdala (BLA), centromedial amygdala (CeM), bed nucleus of the stria terminalis (BNST), prefrontal cortex (mPFC) and ventral hippocampus (vHPC) in an open field paradigm.

View Article and Find Full Text PDF

Abnormalities in synaptic inhibition play a critical role in psychiatric disorders, and accordingly, it is essential to understand the molecular mechanisms linking components of the inhibitory postsynapse to psychiatrically relevant neural circuits and behaviors. Here we study the role of IgSF9b, an adhesion protein that has been associated with affective disorders, in the amygdala anxiety circuitry. We show that deletion of IgSF9b normalizes anxiety-related behaviors and neural processing in mice lacking the synapse organizer Neuroligin-2 (Nlgn2), which was proposed to complex with IgSF9b.

View Article and Find Full Text PDF

Inhibitory neurotransmission plays a key role in anxiety disorders, as evidenced by the anxiolytic effect of the benzodiazepine class of γ-aminobutyric acid (GABA) receptor agonists and the recent discovery of anxiety-associated variants in the molecular components of inhibitory synapses. Accordingly, substantial interest has focused on understanding how inhibitory neurons and synapses contribute to the circuitry underlying adaptive and pathological anxiety behaviors. A key element of the anxiety circuitry is the amygdala, which integrates information from cortical and thalamic sensory inputs to generate fear and anxiety-related behavioral outputs.

View Article and Find Full Text PDF
Article Synopsis
  • Cofilin-1 is crucial for regulating the dynamics of the actin cytoskeleton and is linked to neurotoxicity in neurodegenerative diseases like Alzheimer's, Parkinson's, and Huntington's.
  • Dysfunction of cofilin-1 may contribute to cytoskeletal stress, impacting cellular processes and potentially leading to neurodegeneration through the formation of cofilin/actin rods.
  • These rods initially serve as a protective response to mitochondrial damage, but prolonged stress may cause them to hinder neuronal function further.
View Article and Find Full Text PDF