Publications by authors named "Carolina Perez Segura"

Nuclear import of the hepatitis B virus (HBV) nucleocapsid is essential for replication that occurs in the nucleus. The ~360-angstrom HBV capsid translocates to the nuclear pore complex (NPC) as an intact particle, hijacking human importins in a reaction stimulated by host kinases. This paper describes the mechanisms of HBV capsid recognition by importins.

View Article and Find Full Text PDF

Many viruses undergo transient conformational change to surveil their environments for receptors and host factors. In Hepatitis B virus (HBV) infection, after the virus enters the cell, it is transported to the nucleus by interaction of the HBV capsid with an importin α/β complex. The interaction between virus and importins is mediated by nuclear localization signals on the capsid protein's C-terminal domain (CTD).

View Article and Find Full Text PDF

Protein plasticity and dynamics are important aspects of their function. Here we use solid-state NMR to experimentally characterize the dynamics of the 3.5 MDa hepatitis B virus (HBV) capsid, assembled from  240 copies of the Cp149 core protein.

View Article and Find Full Text PDF

In certain conditions, dye-conjugated icosahedral virus shells exhibit suppression of concentration quenching. The recently observed radiation brightening at high fluorophore densities has been attributed to coherent emission, , to a cooperative process occurring within a subset of the virus-supported fluorophores. Until now, the distribution of fluorophores among potential conjugation sites and the nature of the active subset remained unknown.

View Article and Find Full Text PDF

Molecular dynamics (MD) simulations across spatiotemporal resolutions are widely applied to study viruses and represent the central technique uniting the field of computational virology. We discuss the progress of MD in elucidating the dynamics of the viral life cycle, including the status of modeling intact extracellular virions and leveraging advanced simulations to mimic active life cycle processes. We further remark on the prospects of MD for continued contributions to the basic science characterization of viruses, especially given the increasing availability of high-quality experimental data and supercomputing power.

View Article and Find Full Text PDF

The hepatitis B virus (HBV) capsid is an attractive drug target, relevant to combating viral hepatitis as a major public health concern. Among small molecules known to interfere with capsid assembly, the phenylpropenamides, including AT130, represent an important antiviral paradigm based on disrupting the timing of genome packaging. Here, all-atom molecular dynamics simulations of an intact AT130-bound HBV capsid reveal that the compound increases spike flexibility and improves recovery of helical secondary structure in the spike tips.

View Article and Find Full Text PDF

The Perilla/Hadden-Perilla research team at the University of Delaware presents an overview of computational structural biology, their efforts to model the SARS-CoV-2 viral particle, and their perspective on how their work and training endeavors can contribute to public health.

View Article and Find Full Text PDF

During the hepatitis B virus lifecycle, 120 copies of homodimeric capsid protein assemble around a copy of reverse transcriptase and viral RNA and go on to produce an infectious virion. Assembly needs to be tightly regulated by protein conformational change to ensure symmetry, fidelity, and reproducibility. Here, we show that structures at the intradimer interface regulate conformational changes at the distal interdimer interface and so regulate assembly.

View Article and Find Full Text PDF