Publications by authors named "Carolina Perez Locas"

Food composite samples from the Canadian Total Diet Study which was conducted each year from 2008 to 2012 rotating between different cities were analysed for bisphenol A (BPA). The overall levels of BPA in the composite food samples from each of the five years from 2008 to 2012 were similar in general with averages (range) of 7.7 ng/g (0.

View Article and Find Full Text PDF

The occurrence of formaldehyde in sap and wood tissue of treated and untreated maple sugar trees was investigated using GC/MS. Samples were collected at different periods of the 2009 season and at different locations in Quebec, Canada. The natural concentration of formaldehyde found in untreated samples varied according to periods and locations and ranged from below the LOQ to 1.

View Article and Find Full Text PDF

On the basis of numerous studies on the mechanism of formation of acrylamide (AA) from asparagine and reducing sugars, the decarboxylated Schiff base [ N-( d-glucos-1-yl)-3'-aminopropionamide] and its corresponding Amadori product [ N-(1-deoxy- d-fructos-1-yl)-3'-aminopropionamide) are considered to be possible direct precursors in addition to 3-aminopropionamide (AP). Furthermore, the mechanism of decarboxylation of the initially formed N-( d-glucos-1-yl)asparagine to generate the above-mentioned precursors also remains to be confirmed. To identify the relative importance of AA precursors, the decarboxylated Amadori product (AP ARP) and the corresponding Schiff base were synthesized and their relative abilities to generate AA under dry and wet heating conditions were studied.

View Article and Find Full Text PDF

Although it is generally assumed that the reactivity of sucrose, a nonreducing sugar, in the Maillard reaction is due to its hydrolysis into free glucose and fructose, however, no direct evidence has been provided for this pathway, especially in dry and high temperature systems. Using specifically (13)C-labeled sucrose at C-1 of the fructose moiety, HMF formation was studied at different temperatures. Under dry pyrolytic conditions and at temperatures above 250 degrees C, 90% of HMF originated from fructose moiety and only 10% originated from glucose.

View Article and Find Full Text PDF

Studies on model systems of amino acids and sugars have indicated that acrylamide can be generated from asparagine or from amino acids that can produce acrylic acid either directly such as beta-alanine, aspartic acid and carnosine or indirectly such as cysteine and serine. The main pathway specifically involves asparagine and produces acrylamide directly after a sugar-assisted decarboxylation and 1,2-elimination steps and the second non-specific pathway involves the initial formation of acrylic acid from different sources and its subsequent interaction with ammonia to produce acrylamide. Aspartic acid, beta-alanine and carnosine were found to follow acrylic acid pathway.

View Article and Find Full Text PDF

Studies performed on model systems using pyrolysis-GC-MS analysis and (13)C-labeled sugars and amino acids in addition to ascorbic acid have indicated that certain amino acids such as serine and cysteine can degrade and produce acetaldehyde and glycolaldehyde that can undergo aldol condensation to produce furan after cyclization and dehydration steps. Other amino acids such as aspartic acid, threonine, and alpha-alanine can degrade and produce only acetaldehyde and thus need sugars as a source of glycolaldehyde to generate furan. On the other hand, monosaccharides are also known to undergo degradation to produce both acetaldehyde and glycolaldehyde; however, (13)C-labeling studies have revealed that hexoses in general will mainly degrade into the following aldotetrose derivatives to produce the parent furan-aldotetrose itself, incorporating the C3-C4-C5-C6 carbon chain of glucose (70%); 2-deoxy-3-ketoaldotetrose; incorporating the C1-C2-C3-C4 carbon chain of glucose (15%); and 2-deoxyaldotetrose, incorporating the C2-C3-C4-C5 carbon chain of glucose (15%).

View Article and Find Full Text PDF

Investigations of different sources of acrylamide formation in model systems consisting of amino acids and sugars have indicated the presence of two pathways of acrylamide generation; the main pathway specifically involves asparagine to directly produce acrylamide after a sugar-assisted decarboxylation step, and the second, nonspecific pathway involves the initial formation of acrylic acid from different sources and its subsequent interaction with ammonia and/or amines to produce acrylamide or its N-alkylated derivatives. Aspartic acid, beta-alanine, and carnosine were found to follow the acrylic acid pathway. Labeling studies using [(13)C-4]aspartic acid have confirmed the occurrence in this amino acid of a previously proposed sugar-assisted decarboxylation mechanism identified in the asparagine/glucose model system.

View Article and Find Full Text PDF

Structural considerations dictate that asparagine alone may be converted thermally into acrylamide through decarboxylation and deamination reactions. However, the main product of the thermal decomposition of asparagine was maleimide, mainly due to the fast intramolecular cyclization reaction that prevents the formation of acrylamide. On the other hand, asparagine, in the presence of reducing sugars, was able to generate acrylamide in addition to maleimide.

View Article and Find Full Text PDF